Predicting Blood Donors Using Machine Learning Techniques

被引:8
|
作者
Kauten, Christian [1 ]
Gupta, Ashish [2 ]
Qin, Xiao [1 ]
Richey, Glenn [3 ]
机构
[1] Auburn Univ, Samuel Ginn Coll Engn, Comp Sci & Software Engn, Auburn, AL 36849 USA
[2] Auburn Univ, Harbert Coll Business, Dept Syst & Technol, Auburn, AL 36849 USA
[3] Auburn Univ, Harbert Coll Business, Dept Supply Chain Management, Auburn, AL 36849 USA
基金
美国国家科学基金会;
关键词
Analytics; Blood donors; Blood supply; Machine learning; Retention; RETENTION; CELLS;
D O I
10.1007/s10796-021-10149-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The United States' blood supply chain is experiencing market decline due to recent innovations in surgical practice, transfusion management, and hospital policy. These innovations strain US blood centers, resulting in cuts to surge capacities, consolidation, and reduced funding for research and outreach programs. In this study, we use data from a regional blood center to explore the application of contemporary machine learning algorithms for modeling donor retention. Such predictive models of donor retention can be used to design more cost effective donor outreach programs. Using data from a large US blood center paired with random forest classifiers, we are able to build a model of donor retention with a Mathews correlation of coefficient of 0.851.
引用
收藏
页码:1547 / 1562
页数:16
相关论文
共 50 条
  • [41] Predicting Subclinical Ketosis in Dairy Cows Using Machine Learning Techniques
    Satola, Alicja
    Bauer, Edyta Agnieszka
    ANIMALS, 2021, 11 (07):
  • [42] Predicting Hemodynamic Failure Development in PICU Using Machine Learning Techniques
    Comoretto, Rosanna, I
    Azzolina, Danila
    Amigoni, Angela
    Stoppa, Giorgia
    Todino, Federica
    Wolfler, Andrea
    Gregori, Dario
    DIAGNOSTICS, 2021, 11 (07)
  • [43] Predicting Damage to Buildings Caused by Earthquakes Using Machine Learning Techniques
    Chaurasia, Kuldeep
    Kanse, Samiksha
    Yewale, Aishwarya
    Singh, Vivek Kumar
    Sharma, Bhavnish
    Dattu, B. R.
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019), 2019, : 81 - 86
  • [44] Predicting exclusive breastfeeding in maternity wards using machine learning techniques
    Oliver-Roig, Antonio
    Ramon Rico-Juan, Juan
    Richart-Martinez, Miguel
    Cabrero-Garcia, Julio
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
  • [45] Data Balancing Techniques for Predicting Student Dropout Using Machine Learning
    Mduma, Neema
    DATA, 2023, 8 (03)
  • [46] Predicting the Outcome of Patients With Subarachnoid Hemorrhage Using Machine Learning Techniques
    de Toledo, Paula
    Rios, Pablo M.
    Ledezma, Agapito
    Sanchis, Araceli
    Alen, Jose F.
    Lagares, Alfonso
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (05): : 794 - 801
  • [47] Predicting early cessation of exclusive breastfeeding using machine learning techniques
    Nejsum, Freja Marie
    Wiingreen, Rikke
    Jensen, Andreas Kryger
    Lokkegaard, Ellen Christine Leth
    Hansen, Bo Molholm
    PLOS ONE, 2025, 20 (01):
  • [48] Predicting Women with Postpartum Depression Symptoms Using Machine Learning Techniques
    Gopalakrishnan, Abinaya
    Venkataraman, Revathi
    Gururajan, Raj
    Zhou, Xujuan
    Zhu, Guohun
    MATHEMATICS, 2022, 10 (23)
  • [49] Predicting Resource Utilization for Cloud Workloads Using Machine Learning Techniques
    Adane, Padma D.
    Kakde, O. G.
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1372 - 1376
  • [50] Predicting Suicidal Behaviors in Individuals With Diabetes Using Machine Learning Techniques
    Mamun, Mohammed A.
    Al-Mamun, Firoj
    Hasan, Md Emran
    Roy, Nitai
    ALmerab, Moneerah Mohammad
    Muhit, Mohammad
    Moonajilin, Mst. Sabrina
    PERSPECTIVES IN PSYCHIATRIC CARE, 2024, 2024