Predicting Blood Donors Using Machine Learning Techniques

被引:8
|
作者
Kauten, Christian [1 ]
Gupta, Ashish [2 ]
Qin, Xiao [1 ]
Richey, Glenn [3 ]
机构
[1] Auburn Univ, Samuel Ginn Coll Engn, Comp Sci & Software Engn, Auburn, AL 36849 USA
[2] Auburn Univ, Harbert Coll Business, Dept Syst & Technol, Auburn, AL 36849 USA
[3] Auburn Univ, Harbert Coll Business, Dept Supply Chain Management, Auburn, AL 36849 USA
基金
美国国家科学基金会;
关键词
Analytics; Blood donors; Blood supply; Machine learning; Retention; RETENTION; CELLS;
D O I
10.1007/s10796-021-10149-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The United States' blood supply chain is experiencing market decline due to recent innovations in surgical practice, transfusion management, and hospital policy. These innovations strain US blood centers, resulting in cuts to surge capacities, consolidation, and reduced funding for research and outreach programs. In this study, we use data from a regional blood center to explore the application of contemporary machine learning algorithms for modeling donor retention. Such predictive models of donor retention can be used to design more cost effective donor outreach programs. Using data from a large US blood center paired with random forest classifiers, we are able to build a model of donor retention with a Mathews correlation of coefficient of 0.851.
引用
收藏
页码:1547 / 1562
页数:16
相关论文
共 50 条
  • [31] PREDICTING NASH PATIENTS USING INNOVATIVE MACHINE LEARNING TECHNIQUES
    Docherty, M.
    Huang, J.
    Regnier, S. A.
    Capkun, G.
    Balp, M. M.
    Ye, Q.
    Janssens, N.
    Lopez, P.
    Pedrosa, M.
    Schattenberg, J. M.
    VALUE IN HEALTH, 2019, 22 : S595 - S595
  • [32] Predicting Cloud Resource Provisioning using Machine Learning Techniques
    Bankole, Akindele A.
    Ajila, Samuel A.
    2013 26TH ANNUAL IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2013, : 850 - 853
  • [33] Predicting congenital heart disease using machine learning techniques
    Rani, Samta
    Masood, Sarfaraz
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (01): : 293 - 303
  • [34] Predicting the Housing Price Direction using Machine Learning Techniques
    Banerjee, Debanjan
    Dutta, Suchibrota
    2017 IEEE INTERNATIONAL CONFERENCE ON POWER, CONTROL, SIGNALS AND INSTRUMENTATION ENGINEERING (ICPCSI), 2017, : 2998 - 3000
  • [35] Predicting the quality of air using supervised techniques of machine learning
    Sai Kumar, G.
    Mahalakshmi, D.
    Test Engineering and Management, 2019, 81 (11-12): : 5393 - 5398
  • [36] Predicting nuclear fuel parameters by using machine learning techniques
    Cabezas Contardo, Juan M.
    Lopez-Cortes, Xaviera A.
    Merino, Ivan
    2021 40TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2021,
  • [37] Predicting wax deposition using robust machine learning techniques
    Menad Nait Amar
    Ashkan Jahanbani Ghahfarokhi
    Cuthbert Shang Wui Ng
    Petroleum, 2022, (02) : 167 - 173
  • [38] Predicting the Occurrence of Construction Disputes Using Machine Learning Techniques
    Ayhan, Murat
    Dikmen, Irem
    Birgonul, M. Talat
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2021, 147 (04)
  • [39] Glycemic-aware metrics and oversampling techniques for predicting blood glucose levels using machine learning
    Mayo, Michael
    Chepulis, Lynne
    Paul, Ryan G.
    PLOS ONE, 2019, 14 (12):
  • [40] Predicting preterm birth using machine learning techniques in oral microbiome
    Hong, You Mi
    Lee, Jaewoong
    Cho, Dong Hyu
    Jeon, Jung Hun
    Kang, Jihoon
    Kim, Min-Gul
    Lee, Semin
    Kim, Jin Kyu
    SCIENTIFIC REPORTS, 2023, 13 (01)