Gait Phase Estimation of Unsupervised Outdoors Walking Using IMUs and a Linear Regression Model

被引:3
作者
Soliman, Ahmed [1 ]
Ribeiro, Guilherme A.
Torres, Andres [2 ]
Wu, Li-Fan
Rastgaar, Mo
机构
[1] Purdue Univ, Polytech Inst, W Lafayette, IN 47906 USA
[2] Purdue Univ, Mech Engn, W Lafayette, IN 47906 USA
关键词
Biomechanics; gait analysis; heel strike; PCA; machine learning; prosthesis; IMUs; motion capture; linear regression; EVENT DETECTION; PARAMETERS; PATTERNS;
D O I
10.1109/ACCESS.2022.3227344
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human gait analysis and detection are critical for many applications, including wearable and rehabilitation robotic devices, reducing or tracking injury risk. The proposed work allows researchers to study the gait phase of human subjects in an unsupervised outdoor environment without the need for fixed thresholds and sensor-embedded insoles. We present an experimental protocol to label gait events based on patterns in human subjects from two body-worn inertial measurement units (IMUs). Gait patterns are developed using a force plate and a motion capture system. Upon defining the gait pattern, human subjects walk outdoors for forty minutes to train and test a principal component analysis (PCA)-based linear regression model. Next, gait phase estimation is performed using the defined patterns from other human subjects to accommodate cases where motion capture and force plate data are unavailable. Results showed a minimum normalized gait phase estimation error of 1.81 %, a maximum of 2.48 %, and an average of 2.21 +/- 0.258 % for all subjects involved. Results are particularly significant because the proposed work can be expanded to precise control of human-assistive devices, rehabilitation devices, and clinical gait analysis.
引用
收藏
页码:128090 / 128100
页数:11
相关论文
共 50 条
  • [41] State estimation of LiFePO4 battery using a Linear Regression Analysis
    Lim H.-S.
    Yun J.-S.
    Lee K.-B.
    Transactions of the Korean Institute of Electrical Engineers, 2022, 71 (02): : 366 - 372
  • [42] Estimation of wind resources in the coast of Ceara, Brazil, using the linear regression theory
    Tavares Lira, Marcos Antonio
    Da Silva, Emerson Mariano
    Brabo Alves, Jose Maria
    Oliveira Veras, Gielson Vitor
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 39 : 509 - 529
  • [43] msreg: A command for consistent estimation of linear regression models using matched data
    Hirukawa, Masayuki
    Liu, Di
    Prokhorov, Artem
    STATA JOURNAL, 2021, 21 (01) : 123 - 140
  • [44] Estimation of Three-Dimensional Ground Reaction Forces During Walking and Turning Using Insole Pressure Sensors Based on Gait Pattern Recognition
    Eguchi, Ryo
    Takahashi, Masaki
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 31278 - 31286
  • [45] Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty
    K. Aminian
    K. Rezakhanlou
    E. De Andres
    C. Fritsch
    P. -F. Leyvraz
    P. Robert
    Medical & Biological Engineering & Computing, 1999, 37 : 686 - 691
  • [46] liureg: A Comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors
    Imdadullah, Muhammad
    Aslam, Muhammad
    Altaf, Saima
    R JOURNAL, 2017, 9 (02): : 232 - 247
  • [47] High accuracy estimation of multi-frequency signal parameters by improved phase linear regression
    Zhu, LiMin
    Song, XueMei
    Li, HanXiong
    Ding, Han
    SIGNAL PROCESSING, 2007, 87 (05) : 1066 - 1077
  • [48] Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty
    Aminian, K
    Rezakhanlou, K
    De Andres, E
    Fritsch, C
    Leyvraz, PF
    Robert, P
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1999, 37 (06) : 686 - 691
  • [49] Signal-to-noise Ratio Estimation Technique for SEM Image using Linear Regression
    Yeap, Z. X.
    Sim, K. S.
    Tso, C. P.
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON ROBOTICS, AUTOMATION AND SCIENCES (ICORAS 2016), 2016,
  • [50] Empirical likelihood-MM (EL-MM) estimation for the parameters of a linear regression model
    Ozdemir, Senay
    Arslan, Olcay
    STATISTICS, 2021, 55 (01) : 45 - 67