A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves

被引:130
作者
Chen, Joshua C. [1 ]
Kan, Peter [2 ]
Yu, Zhanghao [3 ]
Alrashdan, Fatima [3 ]
Garcia, Roberto [2 ]
Singer, Amanda [3 ,4 ]
Lai, C. S. Edwin [1 ]
Avants, Ben [3 ]
Crosby, Scott [5 ]
Li, Zhongxi [6 ]
Wang, Boshuo [7 ]
Felicella, Michelle M. [8 ]
Robledo, Ariadna [2 ]
Peterchev, Angel, V [6 ,7 ,9 ,10 ]
Goetz, Stefan M. [6 ,7 ,9 ,11 ]
Hartgerink, Jeffrey D. [1 ,12 ]
Sheth, Sunil A. [13 ]
Yang, Kaiyuan [3 ]
Robinson, Jacob T. [1 ,3 ,4 ,14 ]
机构
[1] Rice Univ, Dept Bioengn, Houston, TX 77005 USA
[2] Univ Texas Med Branch, Dept Neurosurg, 301 Univ Blvd, Galveston, TX USA
[3] Rice Univ, Dept Elect & Comp Engn, POB 1892, Houston, TX 77251 USA
[4] Rice Univ, Appl Phys Program, Houston, TX 77005 USA
[5] Neuromonitoring Associates LLC, Las Vegas, NV USA
[6] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[7] Duke Univ, Sch Med, Dept Psychiat & Behav Sci, Durham, NC USA
[8] Univ Texas Med Branch, Dept Pathol, 301 Univ Blvd, Galveston, TX 77555 USA
[9] Duke Univ, Sch Med, Dept Neurosurg, Durham, NC USA
[10] Duke Univ, Dept Biomed Engn, Durham, NC 27706 USA
[11] Univ Cambridge, Dept Engn, Cambridge, England
[12] Rice Univ, Dept Chem, Houston, TX USA
[13] UTHlth McGovern Med Sch, Dept Neurol, Houston, TX 77030 USA
[14] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
ELECTRODE ARRAY; LONG-TERM; BRAIN; SYSTEM; PREDICTION; POWER;
D O I
10.1038/s41551-022-00873-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Implantable bioelectronic devices for the simulation of peripheral nerves could be used to treat disorders that are resistant to traditional pharmacological therapies. However, for many nerve targets, this requires invasive surgeries and the implantation of bulky devices (about a few centimetres in at least one dimension). Here we report the design and in vivo proof-of-concept testing of an endovascular wireless and battery-free millimetric implant for the stimulation of specific peripheral nerves that are difficult to reach via traditional surgeries. The device can be delivered through a percutaneous catheter and leverages magnetoelectric materials to receive data and power through tissue via a digitally programmable 1 mm x 0.8 mm system-on-a-chip. Implantation of the device directly on top of the sciatic nerve in rats and near a femoral artery in pigs (with a stimulation lead introduced into a blood vessel through a catheter) allowed for wireless stimulation of the animals' sciatic and femoral nerves. Minimally invasive magnetoelectric implants may allow for the stimulation of nerves without the need for open surgery or the implantation of battery-powered pulse generators. An endovascular wireless and battery-free millimetric implant enables the stimulation of peripheral nerves that are difficult to reach via traditional surgeries.
引用
收藏
页码:706 / 716
页数:11
相关论文
共 63 条
[1]   Conformal phased surfaces for wireless powering of bioelectronic microdevices [J].
Agrawal, Devansh R. ;
Tanabe, Yuji ;
Weng, Desen ;
Ma, Andrew ;
Hsu, Stephanie ;
Liao, Song-Yan ;
Zhen, Zhe ;
Zhu, Zi-Yi ;
Sun, Chuanbowen ;
Dong, Zhenya ;
Yang, Fengyuan ;
Tse, Hung Fat ;
Poon, Ada S. Y. ;
Ho, John S. .
NATURE BIOMEDICAL ENGINEERING, 2017, 1 (03)
[2]   Wearable wireless power systems for 'ME-BIT' magnetoelectric-powered bio implants [J].
Alrashdan, Fatima T. ;
Chen, Joshua C. ;
Singer, Amanda ;
Avants, Benjamin W. ;
Yang, Kaiyuan ;
Robinson, Jacob T. .
JOURNAL OF NEURAL ENGINEERING, 2021, 18 (04)
[3]  
[Anonymous], GOVERNING BODY 309 S, DOI DOI 10.1109/IEEESTD.2006.99501
[4]   Deep brain stimulation for Parkinson's disease [J].
Benabid, AL .
CURRENT OPINION IN NEUROBIOLOGY, 2003, 13 (06) :696-706
[5]   Distributed sensor and actuator networks for closed-loop bioelectronic medicine [J].
Bhave, Gauri ;
Chen, Joshua C. ;
Singer, Amanda ;
Sharma, Aditi ;
Robinson, Jacob T. .
MATERIALS TODAY, 2021, 46 :125-135
[6]   Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics [J].
Burton, Alex ;
Obaid, Sofian N. ;
Vazquez-Guardado, Abraham ;
Schmit, Matthew B. ;
Stuart, Tucker ;
Cai, Le ;
Chen, Zhiyuan ;
Kandela, Irawati ;
Haney, Chad R. ;
Waters, Emily A. ;
Cai, Haijiang ;
Rogers, John A. ;
Lu, Luyao ;
Gutruf, Philipp .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (06) :2835-2845
[7]   Sources and effects of electrode impedance during deep brain stimulation [J].
Butson, CR ;
Maks, CB ;
McIntyre, CC .
CLINICAL NEUROPHYSIOLOGY, 2006, 117 (02) :447-454
[8]   A mm-Sized Implantable Medical Device (IMD) With Ultrasonic Power Transfer and a Hybrid Bi-Directional Data Link [J].
Charthad, Jayant ;
Weber, Marcus J. ;
Chang, Ting Chia ;
Arbabian, Amin .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (08) :1741-1753
[9]   Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study [J].
Cook, Mark J. ;
O'Brien, Terence J. ;
Berkovic, Samuel F. ;
Murphy, Michael ;
Morokoff, Andrew ;
Fabinyi, Gavin ;
D'Souza, Wendyl ;
Yerra, Raju ;
Archer, John ;
Litewka, Lucas ;
Hosking, Sean ;
Lightfoot, Paul ;
Ruedebusch, Vanessa ;
Sheffield, W. Douglas ;
Snyder, David ;
Leyde, Kent ;
Himes, David .
LANCET NEUROLOGY, 2013, 12 (06) :563-571
[10]   Microscopic sensors using optical wireless integrated circuits [J].
Cortese, Alejandro J. ;
Smart, Conrad L. ;
Wang, Tianyu ;
Reynolds, Michael F. ;
Norris, Samantha L. ;
Ji, Yanxin ;
Lee, Sunwoo ;
Mok, Aaron ;
Wu, Chunyan ;
Xia, Fei ;
Ellis, Nathan I. ;
Molnar, Alyosha C. ;
Xu, Chris ;
McEuen, Paul L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (17) :9173-9179