Quantum control methods for robust entanglement of trapped ions

被引:11
|
作者
Valahu, C. H. [1 ,2 ]
Apostolatos, I [1 ]
Weidt, S. [1 ,3 ]
Hensinger, W. K. [1 ,3 ]
机构
[1] Univ Sussex, Sussex Ctr Quantum Technol, Brighton BN1 9QH, E Sussex, England
[2] Imperial Coll London, QOLS, Blackett Lab, London SW7 2BW, England
[3] Universal Quantum Ltd, Brighton BN1 6SB, E Sussex, England
基金
英国工程与自然科学研究理事会;
关键词
robust entanglement; trapped ions; coherent control; dynamical decoupling; LOGIC; GATES;
D O I
10.1088/1361-6455/ac8eff
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A major obstacle in the way of practical quantum computing is achieving scalable and robust high-fidelity entangling gates. To this end, quantum control has become an essential tool, as it can make the entangling interaction resilient to sources of noise. Nevertheless, it may be difficult to identify an appropriate quantum control technique for a particular need given the breadth of work pertaining to robust entanglement. To this end, we attempt to consolidate the literature by providing a non-exhaustive summary and critical analysis. The quantum control methods are separated into two categories: schemes which extend the robustness to (i) spin or (ii) motional decoherence. We choose to focus on extensions of the sigma ( x ) circle times sigma ( x ) Molmer-Sorensen interaction using microwaves and a static magnetic field gradient. Nevertheless, some of the techniques discussed here can be relevant to other trapped ion architectures or physical qubit implementations. Finally, we experimentally realize a proof-of-concept interaction with simultaneous robustness to spin and motional decoherence by combining several quantum control methods presented in this manuscript.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Dipolar quantum logic for freely rotating trapped molecular ions
    Hudson, Eric R.
    Campbell, Wesley C.
    PHYSICAL REVIEW A, 2018, 98 (04)
  • [43] Digital-analog counterdiabatic quantum optimization with trapped ions
    Kumar, Shubham
    Hegade, Narendra N.
    de Oliveira, Murilo Henrique
    Solano, Enrique
    Cadavid, Alejandro Gomez
    Albarran-Arriagada, F.
    QUANTUM SCIENCE AND TECHNOLOGY, 2025, 10 (01):
  • [44] Colloquium: Trapped ions as quantum bits: Essential numerical tools
    Singer, Kilian
    Poschinger, Ulrich
    Murphy, Michael
    Ivanov, Peter
    Ziesel, Frank
    Calarco, Tommaso
    Schmidt-Kaler, Ferdinand
    REVIEWS OF MODERN PHYSICS, 2010, 82 (03) : 2609 - 2632
  • [45] Micromotion-enabled improvement of quantum logic gates with trapped ions
    Bermudez, Alejandro
    Schindler, Philipp
    Monz, Thomas
    Blatt, Rainer
    Mueller, Markus
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [46] Encryption and decryption for quantum secret sharing protocol with hot trapped ions
    Yang, Wen-Xing
    Chen, Ai-Xi
    MODERN PHYSICS LETTERS B, 2008, 22 (12): : 1243 - 1249
  • [47] A proposal of quantum logic gates using cold trapped ions in a cavity
    Semiao, FL
    Vidiella-Barranco, A
    Roversi, JA
    PHYSICS LETTERS A, 2002, 299 (5-6) : 423 - 426
  • [48] Microwave quantum logic spectroscopy and control of molecular ions
    Shi, M.
    Herskind, P. F.
    Drewsen, M.
    Chuang, I. L.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [49] Quantum Simulation of Non-Perturbative Cavity QED with Trapped Ions
    Jaako, Tuomas
    Jose Garcia-Ripoll, Juan
    Rabl, Peter
    ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (04)
  • [50] Quantum nondemolition measurement of the collective motional energy of two trapped ions
    Zheng, SB
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 37 (04) : 479 - 482