Quantum control methods for robust entanglement of trapped ions

被引:11
|
作者
Valahu, C. H. [1 ,2 ]
Apostolatos, I [1 ]
Weidt, S. [1 ,3 ]
Hensinger, W. K. [1 ,3 ]
机构
[1] Univ Sussex, Sussex Ctr Quantum Technol, Brighton BN1 9QH, E Sussex, England
[2] Imperial Coll London, QOLS, Blackett Lab, London SW7 2BW, England
[3] Universal Quantum Ltd, Brighton BN1 6SB, E Sussex, England
基金
英国工程与自然科学研究理事会;
关键词
robust entanglement; trapped ions; coherent control; dynamical decoupling; LOGIC; GATES;
D O I
10.1088/1361-6455/ac8eff
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A major obstacle in the way of practical quantum computing is achieving scalable and robust high-fidelity entangling gates. To this end, quantum control has become an essential tool, as it can make the entangling interaction resilient to sources of noise. Nevertheless, it may be difficult to identify an appropriate quantum control technique for a particular need given the breadth of work pertaining to robust entanglement. To this end, we attempt to consolidate the literature by providing a non-exhaustive summary and critical analysis. The quantum control methods are separated into two categories: schemes which extend the robustness to (i) spin or (ii) motional decoherence. We choose to focus on extensions of the sigma ( x ) circle times sigma ( x ) Molmer-Sorensen interaction using microwaves and a static magnetic field gradient. Nevertheless, some of the techniques discussed here can be relevant to other trapped ion architectures or physical qubit implementations. Finally, we experimentally realize a proof-of-concept interaction with simultaneous robustness to spin and motional decoherence by combining several quantum control methods presented in this manuscript.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Quantum search in a nonclassical database of trapped ions
    Linington, I. E.
    Ivanov, P. A.
    Vitanov, N. V.
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [22] Quantum device circuits made of trapped ions
    Pahlke, K
    Mathis, W
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2001, 29 (01) : 119 - 136
  • [23] Enhanced quantum sensing with multi-level structures of trapped ions
    Aharon, N.
    Drewsen, M.
    Retzker, A.
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (03):
  • [24] Entanglement rebirth of multi-trapped ions with trap phonon modes: entanglement sudden death with recovery
    Abdel-Aty, M.
    Bouchene, M.
    McGurn, A. R.
    QUANTUM INFORMATION PROCESSING, 2014, 13 (09) : 1937 - 1950
  • [25] Entanglement rebirth of multi-trapped ions with trap phonon modes: entanglement sudden death with recovery
    M. Abdel-Aty
    M. Bouchene
    A. R. McGurn
    Quantum Information Processing, 2014, 13 : 1937 - 1950
  • [26] Quantum control for entanglement preparation
    Malinovsky, VS
    Sola, IR
    QUANTUM INFORMATION & COMPUTATION, 2005, 5 (4-5) : 364 - 379
  • [27] Quantum computing with trapped ions: a beginner's guide
    Bernardini, Francesco
    Chakraborty, Abhijit
    Ordonez, Carlos R.
    EUROPEAN JOURNAL OF PHYSICS, 2024, 45 (01)
  • [28] Experimental issues in coherent quantum-state manipulation of trapped atomic ions
    Wineland, DJ
    Monroe, C
    Itano, WM
    Leibfried, D
    King, BE
    Meekhof, DM
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 1998, 103 (03) : 259 - 328
  • [29] Quantum simulation of the dynamical Casimir effect with trapped ions
    Trautmann, N.
    Hauke, P.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [30] Control of decoherence: Dynamical decoupling versus quantum Zeno effect - A case study for trapped ions
    Tasaki, S
    Tokuse, A
    Facchi, P
    Pascazio, S
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 98 (02) : 160 - 172