Quantum control methods for robust entanglement of trapped ions

被引:11
|
作者
Valahu, C. H. [1 ,2 ]
Apostolatos, I [1 ]
Weidt, S. [1 ,3 ]
Hensinger, W. K. [1 ,3 ]
机构
[1] Univ Sussex, Sussex Ctr Quantum Technol, Brighton BN1 9QH, E Sussex, England
[2] Imperial Coll London, QOLS, Blackett Lab, London SW7 2BW, England
[3] Universal Quantum Ltd, Brighton BN1 6SB, E Sussex, England
基金
英国工程与自然科学研究理事会;
关键词
robust entanglement; trapped ions; coherent control; dynamical decoupling; LOGIC; GATES;
D O I
10.1088/1361-6455/ac8eff
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A major obstacle in the way of practical quantum computing is achieving scalable and robust high-fidelity entangling gates. To this end, quantum control has become an essential tool, as it can make the entangling interaction resilient to sources of noise. Nevertheless, it may be difficult to identify an appropriate quantum control technique for a particular need given the breadth of work pertaining to robust entanglement. To this end, we attempt to consolidate the literature by providing a non-exhaustive summary and critical analysis. The quantum control methods are separated into two categories: schemes which extend the robustness to (i) spin or (ii) motional decoherence. We choose to focus on extensions of the sigma ( x ) circle times sigma ( x ) Molmer-Sorensen interaction using microwaves and a static magnetic field gradient. Nevertheless, some of the techniques discussed here can be relevant to other trapped ion architectures or physical qubit implementations. Finally, we experimentally realize a proof-of-concept interaction with simultaneous robustness to spin and motional decoherence by combining several quantum control methods presented in this manuscript.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Quantum teleportation by entanglement swapping with trapped ions
    Zheng, XJ
    Fang, MF
    Cai, JW
    Liao, XP
    CHINESE PHYSICS, 2006, 15 (03): : 492 - 495
  • [2] Probing entanglement in adiabatic quantum optimization with trapped ions
    Hauke, Philipp
    Bonnes, Lars
    Heyl, Markus
    Lechner, Wolfgang
    FRONTIERS IN PHYSICS, 2015, 3 (APR)
  • [3] A robust scheme for the implementation of the quantum Rabi model in trapped ions
    Puebla, Ricardo
    Casanova, Jorge
    Plenio, Martin B.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [4] Quantum control and entanglement engineering with cold trapped atoms
    Jessen, PS
    Haycock, DL
    Klose, G
    Deutsch, IH
    Brennen, GK
    EXPERIMENTAL IMPLEMENTATION OF QUANTUM COMPUTATION, 2001, : 235 - 243
  • [5] Quantum transitions and quantum entanglement from Dirac-like dynamics simulated by trapped ions
    Bittencourt, Victor A. S. V.
    Bernardini, Alex E.
    Blasone, Massimo
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [6] Progress of quantum entanglement in a trapped-ion based quantum computer
    Yum, Dahyun
    Choi, Taeyoung
    CURRENT APPLIED PHYSICS, 2022, 41 : 163 - 177
  • [7] Robust dynamical exchange cooling with trapped ions
    Sagesser, T.
    Matt, R.
    Oswald, R.
    Home, J. P.
    NEW JOURNAL OF PHYSICS, 2020, 22 (07):
  • [8] Quantum engineering with trapped ions
    Poyatos, JF
    Gardiner, SA
    Walser, R
    Cirac, JI
    Zoller, P
    Blatt, R
    NEW DEVELOPMENTS ON FUNDAMENTAL PROBLEMS IN QUANTUM PHYSICS, 1997, 81 : 317 - 323
  • [9] Quantum thermometry with trapped ions
    Ivanov, Peter A.
    OPTICS COMMUNICATIONS, 2019, 436 : 101 - 107
  • [10] Optimal Quantum Control of Multimode Couplings between Trapped Ion Qubits for Scalable Entanglement
    Choi, T.
    Debnath, S.
    Manning, T. A.
    Figgatt, C.
    Gong, Z. -X.
    Duan, L. -M.
    Monroe, C.
    PHYSICAL REVIEW LETTERS, 2014, 112 (19)