The strong law of large numbers for sums of randomly chosen random variables

被引:1
作者
Gdula, Agnieszka M. [1 ]
Krajka, Andrzej [1 ]
机构
[1] Marie Curie Sklodowska Univ, Ul Akad 9, PL-20033 Lublin, Poland
关键词
strong law of large numbers; randomly indexed sums; random sets;
D O I
10.1007/s10986-021-09528-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {X(n,)n >= 1} be a sequence of independent or identically distributed dependent random variables, and let {A(n,)n >= 1} be a sequence of random subsets of natural numbers independent of {X-n, n >= 1}. In this paper, we describe the strong law of large numbers (SLLN) of the form Sigma(i is an element of An)(X-i - E Sigma(i is an element of An) X-i)/b(n) -> 0 a.s. as n -> infinity for some sequence of nondecreasing positive numbers {b(n), n >= 1}. There often arises an assumption that {A(n), n >= 1} are almost surely increasing: A(n) subset of A(n + 1), a. s n >= 1.
引用
收藏
页码:471 / 482
页数:12
相关论文
共 8 条
[1]  
[Anonymous], 2005, PROB APPL S
[2]   A general approach to the strong law of large numbers [J].
Fazekas, I ;
Klesov, O .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2000, 45 (03) :436-449
[3]  
Hu T.-C., 1997, International Journal of Mathematics and Mathematical Sciences, V20, P375, DOI DOI 10.1155/S0161171297000483
[4]   On convergence properties of sums of dependent random variables under second moment and covariance restrictions [J].
Hu, Tien-Chung ;
Rosalsky, Andrew ;
Volodin, Andrei .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (14) :1999-2005
[5]   A Note on Strong Convergence of Sums of Dependent Random Variables [J].
Hu, Tien-Chung ;
Weber, Neville C. .
JOURNAL OF PROBABILITY AND STATISTICS, 2009, 2009
[6]  
Matheron G., 1975, Random Sets and Integral Geometry
[7]  
Nguyen H.T., 2006, INTRO RANDOM SETS
[8]   On the strong law of large numbers for identically distributed random variables irrespective of their joint distributions [J].
Rosalsky, Andrew ;
Stoica, George .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (17-18) :1265-1270