Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. Part I

被引:29
作者
Andre, N
Shafrir, I
机构
[1] Univ Tours, Dept Math, F-37200 Tours, France
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
D O I
10.1007/s002050050083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:45 / 73
页数:29
相关论文
共 20 条
[11]   A MODEL FOR SUPERCONDUCTING THIN-FILMS HAVING VARIABLE THICKNESS [J].
DU, Q ;
GUNZBURGER, MD .
PHYSICA D-NONLINEAR PHENOMENA, 1993, 69 (3-4) :215-231
[12]   Lower bounds for the energy of S-1-valued maps in perforated domains [J].
Han, ZC ;
Shafrir, I .
JOURNAL D ANALYSE MATHEMATIQUE, 1995, 66 :295-305
[13]   Degenerate elliptic systems and applications to Ginzburg-Landau type equations .1. [J].
Han, ZC ;
Li, YY .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (02) :171-202
[14]  
LIN FH, 1995, ANN I H POINCARE-AN, V12, P599
[15]   ON THE EQUILIBRIUM POSITION OF GINZBURG-LANDAU VORTICES [J].
RUBINSTEIN, J .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1995, 46 (05) :739-751
[16]  
SHAFRIR I, 1994, CR ACAD SCI I-MATH, V318, P327
[17]  
Struwe M., 1995, DIFFERENTIAL INTEGRA, V7, P1613
[18]  
Struwe M., 1994, Differ. Integral Equ, V7, P1613
[20]  
[No title captured]