Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. Part I

被引:29
作者
Andre, N
Shafrir, I
机构
[1] Univ Tours, Dept Math, F-37200 Tours, France
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
D O I
10.1007/s002050050083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:45 / 73
页数:29
相关论文
共 20 条
[1]   Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. Part II [J].
André N. ;
Shafrir I. .
Archive for Rational Mechanics and Analysis, 1998, 142 (1) :75-98
[2]  
ANDRE N, 1995, CR ACAD SCI I-MATH, V321, P999
[3]   ON THE ZEROS OF SOLUTIONS TO GINZBURG-LANDAU TYPE SYSTEMS [J].
BAUMAN, P ;
CARLSON, NN ;
PHILLIPS, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (05) :1283-1293
[4]  
BEAULIEU A, 1995, CR ACAD SCI I-MATH, V320, P181
[5]   TILING FIGURES OF THE PLANE WITH 2 BARS [J].
BEAUQUIER, D ;
NIVAT, M ;
REMILA, E ;
ROBSON, M .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1995, 5 (01) :1-25
[6]   ASYMPTOTICS FOR THE MINIMIZATION OF A GINZBURG-LANDAU FUNCTIONAL [J].
BETHUEL, F ;
BREZIS, H ;
HELEIN, F .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :123-148
[7]  
BETHUEL F, 1994, GINZBURGLANDAU VORTI
[8]   QUANTIZATION EFFECT FOR DELTA-U=U(1 - VERTICAL-BAR-U-VERTICAL-BAR(2)) IN R(2) [J].
BREZIS, H ;
MERLE, F ;
RIVIERE, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 126 (01) :35-58
[9]   Local minimizers for the Ginzburg-Landau energy [J].
delPino, M ;
Felmer, PL .
MATHEMATISCHE ZEITSCHRIFT, 1997, 225 (04) :671-684
[10]  
DELPINO M, 1995, CR ACAD SCI I-MATH, V321, P1207