Efficient Privacy-Preserving Machine Learning in Hierarchical Distributed System

被引:0
作者
Jia, Qi [1 ]
Guo, Linke [1 ]
Fang, Yuguang [2 ]
Wang, Guirong [3 ]
机构
[1] Binghamton Univ, Dept Elect & Comp Engn, Binghamton, NY 13850 USA
[2] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[3] SUNY Upstate Med Univ, Dept Surg, Syracuse, NY 13210 USA
来源
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING | 2019年 / 6卷 / 04期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Efficiency; privacy; hierarchical distributed system; machine learning;
D O I
10.1109/TNSE.2018.2859420
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the dramatic growth of data in both amount and scale, distributed machine learning has become an important tool for the massive data to finish the tasks as prediction, classification, etc. However, due to the practical physical constraints and the potential privacy leakage of data, it is infeasible to aggregate raw data from all data owners for the learning purpose. To tackle this problem, the distributed privacy-preserving learning approaches are introduced to learn over all distributed data without exposing the real information. However, existing approaches have limits on the complicated distributed system. On the one hand, traditional privacy-preserving learning approaches rely on heavy cryptographic primitives on training data, in which the learning speed is dramatically slowed down due to the computation overheads. On the other hand, the complicated system architecture becomes a barrier in the practical distributed system. In this paper, we propose an efficient privacy-preserving machine learning scheme for hierarchical distributed systems. We modify and improve the collaborative learning algorithm. The proposed scheme not only reduces the overhead for the learning process but also provides the comprehensive protection for each layer of the hierarchical distributed system. In addition, based on the analysis of the collaborative convergency in different learning groups, we also propose an asynchronous strategy to further improve the learning efficiency of hierarchical distributed system. At the last, extensive experiments on real-world data are implemented to evaluate the privacy, efficacy, and efficiency of our proposed schemes.
引用
收藏
页码:599 / 612
页数:14
相关论文
共 32 条
[1]  
[Anonymous], 2006, KDD, DOI DOI 10.1145/1150402.1150477
[2]  
[Anonymous], 5 IEEE INT C DAT MIN
[3]   Searching for exotic particles in high-energy physics with deep learning [J].
Baldi, P. ;
Sadowski, P. ;
Whiteson, D. .
NATURE COMMUNICATIONS, 2014, 5
[4]  
BENALOH JC, 1987, LECT NOTES COMPUT SC, V263, P251
[5]  
Bottou L., 2008, P 20 INT C NEUR INF, V20, P161
[6]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[7]  
Cheng L, 2006, 2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, P664
[8]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[9]   An Asynchronous Distributed ADMM Algorithm and Efficient Communication Model [J].
Fang, Ling ;
Lei, Yongmei .
2016 IEEE 14TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 14TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 2ND INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/DATACOM/CYBERSC, 2016, :136-140
[10]  
Forero PA, 2010, J MACH LEARN RES, V11, P1663