ON NONLINEAR FRACTIONAL-ORDER MATHEMATICAL MODEL OF FOOD-CHAIN

被引:5
|
作者
Nisar, Kottakkaran Sooppy [1 ]
Rahman, Mati Ur [2 ]
Laouini, Ghaylen [3 ]
Shutaywi, Meshal [4 ]
Arfan, Muhammad [5 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[2] Shanghai Jiao Tong Univ, Dept Math, 800 Dongchuan Rd, Shanghai, Peoples R China
[3] Amer Univ Middle East, Coll Engn & Technol, Kuwait, Kuwait
[4] King Abdulaziz Univ, Coll Sci & Arts, Dept Math, POB 344, Rabigh 21911, Saudi Arabia
[5] Univ Malakand, Dept Math, Chakdara Dir L 18000, Khyber Pakhtunk, Pakistan
关键词
Food-Chain Model; Existence Result; ABC Derivative; Adams-Bashforth Method; PREDATOR-PREY MODEL; DEANGELIS FUNCTIONAL-RESPONSE; LAPLACE ADOMIAN DECOMPOSITION; INTERFERENCE; DYNAMICS; CHAOS; DELAY; TIME;
D O I
10.1142/S0218348X2240014X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the dynamical semi-analysis of the delayed food chain model under the considered fractional order. The food chain model is composed of three compartments, namely, population of the prey, intermediate predator and a top predator. By using the fixed point theorem approach, we exploit some conditions for existence results and stability for the considered system via Atangana-Baleanu-Caputo derivative with fractional order. Also, using the well-known Adam-Bashforth technique for numerics, we simulate the concerning results for the interference between the prey and intermediate predator. Graphical results are discussed for different fractional-order values for the considered model.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Parameter and State Estimation of Nonlinear Fractional-Order Model Using Luenberger Observer
    Marzougui, Soumaya
    Bedoui, Saida
    Atitallah, Asma
    Abderrahim, Kamel
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (10) : 5366 - 5391
  • [32] Bifurcation control of a fractional-order delayed competition and cooperation model of two enterprises
    Xu ChangJin
    Liao MaoXin
    Li PeiLuan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2019, 62 (12) : 2130 - 2143
  • [33] Bifurcation control strategy for a fractional-order delayed financial crises contagions model
    Xu, Changjin
    Aouiti, Chaouki
    Liu, Zixin
    Qin, Qiwen
    Yao, Lingyun
    AIMS MATHEMATICS, 2022, 7 (02): : 2102 - 2122
  • [34] Dynamical and numerical analyses of a generalized food-chain model
    Moghadas, SM
    Gumel, AB
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 142 (01) : 35 - 49
  • [35] Stability analysis for nonlinear fractional-order systems based on comparison principle
    Wang, Zhiliang
    Yang, Dongsheng
    Ma, Tiedong
    Sun, Ning
    NONLINEAR DYNAMICS, 2014, 75 (1-2) : 387 - 402
  • [36] Stability Analysis of Fractional-Order Nonlinear Alcohol Consumption Model and Numerical Simulation
    Sivashankar, Murugesan
    Boulaaras, Salah
    Sabarinathan, Sriramulu
    FRACTAL AND FRACTIONAL, 2025, 9 (02)
  • [37] Parameters Estimation and Stability Analysis of Nonlinear Fractional-Order Economic System Based on Empirical Data
    He, Lei
    Wang, Xiong
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [38] Numerical Modeling of Fractional-Order Biological Systems
    Rihan, Fathalla A.
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [39] Limit cycles in a food-chain with inhibition responses
    Zhu, Lemin
    Wang, Siyuan
    Huang, Xuncheng
    Villasana, Minaya
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) : 3082 - 3090
  • [40] CHAOTIC VIBRATION OF NONLINEAR FRACTIONAL-ORDER DIFFERENTIAL OSCILLATOR
    Zhang, W.
    Huang, F.
    Li, B. H.
    Li, G.
    Zheng, L. M.
    Wang, X. L.
    ENVIRONMENTAL VIBRATIONS: PREDICTION, MONITORING, MITIGATION AND EVALUATION, VOLS I AND II, 2009, : 937 - 941