Edge magnetism in transition metal dichalcogenide nanoribbons: Mean field theory and determinant quantum Monte Carlo

被引:6
|
作者
Brito, Francisco M. O. [1 ]
Li, Linhu [2 ,3 ]
Lopes, Joao M. V. P. [4 ]
V. Castro, Eduardo [4 ,5 ]
机构
[1] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Quantum Metrol & Sensing &, Zhuhai Campus, Zhuhai 519082, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Zhuhai 519082, Peoples R China
[4] Univ Porto, Dept Fis & Astron, Ctr Fis Univ Minho & Porto, Fac Ciencias, P-4169007 Porto, Portugal
[5] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
GRAPHENE NANORIBBONS; HALF-METALLICITY; ZIGZAG; MOS2; FERROMAGNETISM; OPTOELECTRONICS; STATES;
D O I
10.1103/PhysRevB.105.195130
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Edge magnetism in zigzag transition metal dichalcogenide nanoribbons is studied using a three-band tight binding model with local electron-electron interactions. Both mean field theory and the unbiased, numerically exact determinant quantum Monte Carlo method are applied. Depending on the edge filling, mean field theory predicts different phases: gapped spin dimer and antiferromagnetic phases appear for two specific fillings, with a tendency towards metallic edge-ferromagnetism away from those fillings. Determinant quantum Monte Carlo simulations confirm the stability of the antiferromagnetic gapped phase at the same edge filling as mean field theory, despite being sign-problematic for other fillings. The obtained results point to edge filling as yet another key ingredient to understand the observed magnetism in nanosheets. Moreover, the filling dependent edge magnetism gives rise to spin-polarized edge currents in zigzag nanoribbons which could be tuned through a back gate voltage, with possible applications to spintronics.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons
    Golor, Michael
    Lang, Thomas C.
    Wessel, Stefan
    PHYSICAL REVIEW B, 2013, 87 (15):
  • [2] Magnetism of finite graphene samples: Mean-field theory compared with exact diagonalization and quantum Monte Carlo simulations
    Feldner, Helene
    Meng, Zi Yang
    Honecker, Andreas
    Cabra, Daniel
    Wessel, Stefan
    Assaad, Fakher F.
    PHYSICAL REVIEW B, 2010, 81 (11):
  • [3] Mean field theory of the swap Monte Carlo algorithm
    Ikeda, Harukuni
    Zamponi, Francesco
    Ikeda, Atsushi
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (23):
  • [4] Efficiency of quantum Monte Carlo impurity solvers for the dynamical mean-field theory
    Bluemer, N.
    PHYSICAL REVIEW B, 2007, 76 (20):
  • [5] MONTE-CARLO MEAN-FIELD THEORY
    BANAVAR, JR
    CIEPLAK, M
    MARITAN, A
    PHYSICAL REVIEW LETTERS, 1991, 67 (13) : 1807 - 1807
  • [6] Monte Carlo methods for quantum field theory
    Kennedy, AD
    CHINESE JOURNAL OF PHYSICS, 2000, 38 (03) : 707 - 720
  • [7] Determinant Quantum Monte Carlo Study of the Orbitally Selective Mott Transition
    Bouadim, K.
    Batrouni, G. G.
    Scalettar, R. T.
    PHYSICAL REVIEW LETTERS, 2009, 102 (22)
  • [8] Transition metal oxides using quantum Monte Carlo
    Wagner, Lucas K.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (34)
  • [9] Quantum Monte Carlo Studies of Transition Metal Oxides
    Mitas, Lubos
    Kolorenc, Jindrich
    THEORETICAL AND COMPUTATIONAL METHODS IN MINERAL PHYSICS: GEOPHYSICAL APPLICATIONS, 2010, 71 : 137 - 145
  • [10] Anisotropy of the spin-polarized edge current in monolayer transition metal dichalcogenide zigzag nanoribbons
    Correa, J. H.
    Dias, A. C.
    Villegas-Lelovsky, L.
    Fu, Jiyong
    Chico, Leonor
    Qu, Fanyao
    PHYSICAL REVIEW B, 2020, 101 (19)