Edge magnetism in transition metal dichalcogenide nanoribbons: Mean field theory and determinant quantum Monte Carlo

被引:6
|
作者
Brito, Francisco M. O. [1 ]
Li, Linhu [2 ,3 ]
Lopes, Joao M. V. P. [4 ]
V. Castro, Eduardo [4 ,5 ]
机构
[1] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Quantum Metrol & Sensing &, Zhuhai Campus, Zhuhai 519082, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Zhuhai 519082, Peoples R China
[4] Univ Porto, Dept Fis & Astron, Ctr Fis Univ Minho & Porto, Fac Ciencias, P-4169007 Porto, Portugal
[5] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
GRAPHENE NANORIBBONS; HALF-METALLICITY; ZIGZAG; MOS2; FERROMAGNETISM; OPTOELECTRONICS; STATES;
D O I
10.1103/PhysRevB.105.195130
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Edge magnetism in zigzag transition metal dichalcogenide nanoribbons is studied using a three-band tight binding model with local electron-electron interactions. Both mean field theory and the unbiased, numerically exact determinant quantum Monte Carlo method are applied. Depending on the edge filling, mean field theory predicts different phases: gapped spin dimer and antiferromagnetic phases appear for two specific fillings, with a tendency towards metallic edge-ferromagnetism away from those fillings. Determinant quantum Monte Carlo simulations confirm the stability of the antiferromagnetic gapped phase at the same edge filling as mean field theory, despite being sign-problematic for other fillings. The obtained results point to edge filling as yet another key ingredient to understand the observed magnetism in nanosheets. Moreover, the filling dependent edge magnetism gives rise to spin-polarized edge currents in zigzag nanoribbons which could be tuned through a back gate voltage, with possible applications to spintronics.
引用
收藏
页数:14
相关论文
共 8 条
  • [1] Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons
    Golor, Michael
    Lang, Thomas C.
    Wessel, Stefan
    PHYSICAL REVIEW B, 2013, 87 (15):
  • [2] Ultrafast field-driven valley polarization of transition metal dichalcogenide quantum dots
    Mitra, Aranyo
    Zafar, Ahmal Jawad
    Apalkov, Vadym
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (20)
  • [3] Multiorbital cluster dynamical mean-field theory with an improved continuous-time quantum Monte Carlo algorithm
    Nomura, Yusuke
    Sakai, Shiro
    Arita, Ryotaro
    PHYSICAL REVIEW B, 2014, 89 (19)
  • [4] Dynamical Mean-Field Theory of Moire? Bilayer Transition Metal Dichalcogenides: Phase Diagram, Resistivity, and Quantum Criticality
    Zang, Jiawei
    Wang, Jie
    Cano, Jennifer
    Georges, Antoine
    Millis, Andrew J.
    PHYSICAL REVIEW X, 2022, 12 (02):
  • [5] Hubbard model on the honeycomb lattice: From static and dynamical mean-field theories to lattice quantum Monte Carlo simulations
    Raczkowski, Marcin
    Peters, Robert
    Thi Thu Phung
    Takemori, Nayuta
    Assaad, Fakher F.
    Honecker, Andreas
    Vahedi, Javad
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [6] On Achieving High Accuracy in Quantum Chemical Calculations of 3d Transition Metal-Containing Systems: A Comparison of Auxiliary-Field Quantum Monte Carlo with Coupled Cluster, Density Functional Theory, and Experiment for Diatomic Molecules
    Shee, James
    Rudshteyn, Benjamin
    Arthur, Evan J.
    Zhang, Shiwei
    Reichman, David R.
    Friesner, Richard A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (04) : 2346 - 2358
  • [7] Mott insulators in moire transition metal dichalcogenides at fractional fillings: Slave-rotor mean-field theory
    Song, Zhenhao
    Seifert, Urban F. P.
    Luo, Zhu-Xi
    Balents, Leon
    PHYSICAL REVIEW B, 2023, 108 (15)