Synthetic Strategy of Si@void@C Nanoparticles for High- Performance Lithium-Ion Battery Anodes

被引:11
作者
Zhang, Yuzhe [1 ,2 ]
Qin, Xue [1 ,2 ,3 ]
Liu, Yu [1 ,2 ]
Lei, Chanrong [1 ,2 ]
Wei, Tianyu [1 ,2 ]
Guo, Zixiang [1 ,2 ]
Wu, Jialin [1 ,2 ]
Wang, Tangzheng [1 ,2 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Chem, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
关键词
silicon; void space; carbon; anode; lithium-ion batteries; SILICON ANODES; COMPOSITE; NANOCOMPOSITES; DESIGN; ROBUST;
D O I
10.1021/acsaem.2c03048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon anode materials have the absolute predom-inance of high theoretical specific capacity, but its conductivity is low. What is more, the huge volume expansion (similar to 300%) of silicon during cycling causes rapid capacity fading. Herein, high-perform-ance Si@void@C nanoparticles are synthesized by a unique ZnO template and mild strategy for the first time. Compared with the traditional synthesis method, a milder and environmentally friendly synthesis strategy provides a new feasible scheme for the large-scale commercialization of silicon anodes. The carbon layer blocks the silicon from the electrolyte and improves the conductivity of materials, and the yolk-void-shell structure accommodates the volume expansion of silicon during cycling. Si@void@C nanoparticles prepared with the ZnO template show excellent cycle and rate performances compared with the traditional synthetic strategy. After 500 cycles, the specific capacity of Si@void@C still maintains 934 mA h g-1 at 1 A g-1, and the average specific capacity is as high as 1125.4 mA h g-1 at a high current density of 4 A g-1. To sum up, the potential of Si@void@C anode for lithium-ion batteries cannot be underestimated.
引用
收藏
页码:14476 / 14486
页数:11
相关论文
共 55 条
[1]   Scalable Synthesis of Pore-Rich Si/C@C Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes [J].
An, Weili ;
He, Peng ;
Che, Zongzhou ;
Xiao, Chengmao ;
Guo, Eming ;
Pang, Chunlei ;
He, Xueqin ;
Ren, Jianguo ;
Yuan, Guohui ;
Du, Ning ;
Yang, Deren ;
Peng, Dong-Liang ;
Zhang, Qiaobao .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (08) :10308-10318
[2]   Nano-structured silicon and silicon based composites as anode materials for lithium ion batteries: recent progress and perspectives [J].
Bitew, Zelalem ;
Tesemma, Mulugeta ;
Beyene, Yonas ;
Amare, Meareg .
SUSTAINABLE ENERGY & FUELS, 2022, 6 (04) :1014-1050
[3]   Self-assembly of hierarchical Ti3C2Tx-CNT/SiNPs resilient films for high performance lithium ion battery electrodes [J].
Cao, Dong ;
Ren, Mingxi ;
Xiong, Jie ;
Pan, Limei ;
Wang, Yi ;
Ji, Xinzhe ;
Qiu, Tai ;
Yang, Jian ;
Zhang, Chuanfang .
ELECTROCHIMICA ACTA, 2020, 348
[4]   Dual carbon and void space confined SiOx/C@void@Si/C yolk-shell nanospheres with high-rate performances and outstanding cyclability for lithium-ion batteries anodes [J].
Chen, Wenyan ;
Kuang, Shaojie ;
Wei, Hongshan ;
Wu, Peizhen ;
Tang, Tang ;
Li, Hailin ;
Liang, Yeru ;
Yu, Xiaoyuan ;
Yu, Jingfang .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 610 :583-591
[5]   Environmentally Friendly Single-Step Laser Synthesis of Three-Dimensional C-Si-SiC Micro/Nanoporous Composite Lithium-ion Battery Electrodes and Electrochemical Performance [J].
Cheng, Dongxu ;
Huang, Yihe ;
Peng, Yudong ;
Wang, Bin ;
Guo, Wei ;
Liu, Zhu ;
Li, Lin .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (05) :6183-6193
[6]   Anomalous Si-based composite anode design by densification and coating strategies for practical applications in Li-ion batteries [J].
Cho, Moon Kyu ;
You, Seung Jae ;
Woo, Jung Gyu ;
An, Jung-Chul ;
Kang, Sujin ;
Lee, Hyun-Wook ;
Kim, Ji Hoon ;
Yang, Cheol-Min ;
Kim, Yong Jung .
COMPOSITES PART B-ENGINEERING, 2021, 215
[7]   Review of metal oxides as anode materials for lithium-ion batteries [J].
Du, Jiakai ;
Li, Qingmeng ;
Chai, Jiali ;
Jiang, Lei ;
Zhang, Qianqian ;
Han, Ning ;
Zhang, Wei ;
Tang, Bohejin .
DALTON TRANSACTIONS, 2022, 51 (25) :9584-9590
[8]   Lignin derived Si@C composite as a high performance anode material for lithium ion batteries [J].
Du, Leilei ;
Wu, Wei ;
Luo, Chao ;
Zhao, Huajun ;
Xu, Dongwei ;
Wang, Ruo ;
Deng, Yonghong .
SOLID STATE IONICS, 2018, 319 :77-82
[9]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[10]   High-voltage liquid electrolytes for Li batteries: progress and perspectives [J].
Fan, Xiulin ;
Wang, Chunsheng .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (18) :10486-10566