Review: High-Entropy Materials for Lithium-Ion Battery Electrodes

被引:41
|
作者
Sturman, James W. [1 ,2 ]
Baranova, Elena A. [2 ]
Abu-Lebdeh, Yaser [1 ]
机构
[1] Natl Res Council Canada, Energy Min & Environm Res Ctr, Ottawa, ON, Canada
[2] Univ Ottawa, Ctr Catalysis Res & Innovat CCRI, Dept Chem & Biol Engn, Ottawa, ON, Canada
关键词
energy storage; lithium-ion battery; high-entropy; alloys; ceramic oxides; electrode materials; ANODE MATERIAL; RARE-EARTH; OXIDES; STORAGE; ALLOYS; MG; MECHANISMS; CONVERSION; CATHODES;
D O I
10.3389/fenrg.2022.862551
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The lithium-ion battery is a type of rechargeable power source with applications in portable electronics and electric vehicles. There is a thrust in the industry to increase the capacity of electrode materials and hence the energy density of the battery. The high-entropy (HE) concept is one strategy that may allow for the compositional variability needed to design new materials for next-generation batteries. Inspired by HE-alloys, HE-oxides are an emerging class of multicomponent ceramics with promising electrochemical properties. This review will focus on the application of these materials to the development of new battery electrodes with insight into the materials' structure/property relationship and battery performance. We highlight recent results on HE-oxides for the cathode and anode. In addition, we discuss some emerging results on HE-solid electrolytes and HE-alloy anodes.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Emerging high-entropy material electrodes for metal-ion batteries
    Shen, Jianyu
    Zeng, Zhen
    Tang, Weihua
    SUSMAT, 2024, 4 (04):
  • [22] Phase change materials for lithium-ion battery thermal management systems: A review
    Li, Zaichao
    Zhang, Yuang
    Zhang, Shufen
    Tang, Bingtao
    JOURNAL OF ENERGY STORAGE, 2024, 80
  • [23] High-Entropy Halides for Intercalation Battery Electrode Materials
    Schumacher, Sebastian
    Alekseev, Evgeny V.
    Yu, Shicheng
    Tempel, Hermann
    Eichel, Ruediger-A.
    CHEMELECTROCHEM, 2025,
  • [24] Porous silicon in carbon cages as high-performance lithium-ion battery anode Materials
    Zhang, Yaguang
    Du, Ning
    Zhu, Sijia
    Chen, Yifan
    Lin, Yangfan
    Wu, Shali
    Yang, Deren
    ELECTROCHIMICA ACTA, 2017, 252 : 438 - 445
  • [25] Advanced and safer lithium-ion battery based on sustainable electrodes
    Ding, Xiang
    Huang, Xiaobing
    Jin, Junling
    Ming, Hai
    Wang, Limin
    Ming, Jun
    JOURNAL OF POWER SOURCES, 2018, 379 : 53 - 59
  • [26] Application of Covalent Organic Frameworks in High-performance Lithium-ion Battery Anode Materials
    Zhang, Jinkai
    Li, Jiali
    Liu, Xiaoming
    Mu, Ying
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2024, 45 (03):
  • [27] A review of nitrogen-doped carbon materials for lithium-ion battery anodes
    Shaker, Majid
    Ghazvini, Ali Asghar Sadeghi
    Shahalizade, Taieb
    Gaho, Mehran Ali
    Mumtaz, Asim
    Javanmardi, Shayan
    Riahifar, Reza
    Meng, Xiao-Min
    Jin, Zhan
    Ge, Qi
    NEW CARBON MATERIALS, 2023, 38 (02) : 247 - 278
  • [28] New electrode materials for lithium-ion batteries (Review)
    Kulova, T. L.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2013, 49 (01) : 1 - 25
  • [29] New electrode materials for lithium-ion batteries (Review)
    T. L. Kulova
    Russian Journal of Electrochemistry, 2013, 49 : 1 - 25
  • [30] Auxiliary ball milling to prepare WS2/graphene nanosheets composite for lithium-ion battery anode materials
    Wu, Yong-Lin
    Hong, Jia-Bin
    Zhong, Wei-Xu
    Wang, Chun-Xiang
    Li, Zhi-Feng
    Dmytro, Sydorov
    TUNGSTEN, 2024, 6 (01) : 124 - 133