Dilute dual-salt electrolyte for successful passivation of in-situ deposited Li anode and permit effective cycling of high voltage anode free batteries

被引:14
作者
Beyene, Tamene Tadesse [1 ]
Su, Wei-Nien [2 ]
Hwang, Bing Joe [2 ,3 ,4 ]
机构
[1] Jimma Univ, Coll Nat Sci, Dept Chem, POB 378, Jimma, Ethiopia
[2] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci Technol, Nano Electrochem Lab, Taipei 106, Taiwan
[3] Natl Taiwan Univ Sci & Technol, Appl Res Ctr Thin Film Met Glass, Dept Chem Engn, Nano Electrochem Lab, Taipei 106, Taiwan
[4] Natl Synchrotron Radiat Res Ctr, Hsinchu 300 76, Taiwan
关键词
Imide-orthoborate; Dual-salt; Anode free; Interfacial chemistry; High voltage battery; RENEWABLE ENERGY; METAL; PERFORMANCE; DISSOLUTION; CATHODES; STORAGE; LITFSI; LIODFB; ETHER;
D O I
10.1016/j.jpowsour.2022.231752
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An investigation of the cycling stability of anode-free batteries (AFBs) using dilute dual-salt electrolytes is conducted in a mixture of ether and carbonate solvents. Using the AFB configuration, various compositions of the dual-salt electrolyte were optimized and it was found that 0.9M-LiTFSI+0.3M-LiDFOB in FEC/TTE (2:3, v/v) is the best. An in-depth investigation of the electrochemical performance of AFB was conducted in this optimized dual-salt composition in comparison to 1.2 M LiTFSI in the same solvent ratio. Accordingly, the performance of Cu||NMC cell in the dual-salt electrolyte surpassed that of the single-salt. The relative better performance of the AFB in the dual-salt electrolyte is attributed to the co-existence of dual-ion (TFSI-&DFOB-) in the electrolyte, which enhanced conductivity and introduces entirely new interphases via preferential decomposition mechanisms. The newly formed interface is stable, ionically conductive, and able to intercept parasitic side reactions between the electrolyte solvent and the deposited Li by blocking electron and solvent flow towards the deposit. As a result of the unique interfacial chemistry brought by this dual-salt system, this electrolyte supports a unique CE (98.6%) and capacity retention (63%) in 4.5V Cu||NMC cell and exhibited >27% improvement over the single salt electrolyte after 50 cycles.
引用
收藏
页数:10
相关论文
共 39 条
[1]   Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes [J].
Alvarado, Judith ;
Schroeder, Marshall A. ;
Pollard, Travis P. ;
Wang, Xuefeng ;
Lee, Jungwoo Z. ;
Zhang, Minghao ;
Wynn, Thomas ;
Ding, Michael ;
Borodin, Oleg ;
Meng, Ying Shirley ;
Xu, Kang .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) :780-794
[2]   Overview of energy storage in renewable energy systems [J].
Amrouche, S. Ould ;
Rekioua, D. ;
Rekioua, T. ;
Bacha, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (45) :20914-20927
[3]   Effects of Concentrated Salt and Resting Protocol on Solid Electrolyte Interface Formation for Improved Cycle Stability of Anode-Free Lithium Metal Batteries [J].
Beyene, Tamene Tadesse ;
Jote, Bikila Alemu ;
Wondimkun, Zewdu Tadesse ;
Olbassa, Bizualem Wakuma ;
Huang, Chen-Jui ;
Thirumalraj, Balamurugan ;
Wang, Chia-Hsin ;
Su, Wei-Nien ;
Dai, Hongjie ;
Hwang, Bing-Joe .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (35) :31962-31971
[4]   Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries [J].
Beyene, Tamene Tadesse ;
Bezabh, Hailemariam Kassa ;
Weret, Misganaw Adigo ;
Hagos, Teklay Mezgebe ;
Huang, Chen-Jui ;
Wang, Chia-Hsin ;
Su, Wei-Nien ;
Dai, Hongjie ;
Hwang, Bing-Joe .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) :A1501-A1509
[5]   Dissolution Mechanisms of LiNi1/3Mn1/3Co1/3O2 Positive Electrode Material from Lithium-Ion Batteries in Acid Solution [J].
Billy, Emmanuel ;
Joulie, Marion ;
Laucournet, Richard ;
Boulineau, Adrien ;
De Vito, Eric ;
Meyer, Daniel .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (19) :16424-16435
[6]   A Dual-Salt Gel Polymer Electrolyte with 3D Cross-Linked Polymer Network for Dendrite-Free Lithium Metal Batteries [J].
Fan, Wei ;
Li, Nian-Wu ;
Zhang, Xiuling ;
Zhao, Shuyu ;
Cao, Ran ;
Yin, Yingying ;
Xing, Yi ;
Wang, Jiaona ;
Guo, Yu-Guo ;
Li, Congju .
ADVANCED SCIENCE, 2018, 5 (09)
[7]   Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries [J].
Genovese, Matthew ;
Louli, A. J. ;
Weber, Rochelle ;
Hames, Sam ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (14) :A3321-A3325
[8]   Performance and resource considerations of Li-ion battery electrode materials [J].
Ghadbeigi, Leila ;
Harada, Jaye K. ;
Lettiere, Bethany R. ;
Sparks, Taylor D. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (06) :1640-1650
[9]   The role of renewable energy in the global energy transformation [J].
Gielen, Dolf ;
Boshell, Francisco ;
Saygin, Deger ;
Bazilian, Morgan D. ;
Wagner, Nicholas ;
Gorini, Ricardo .
ENERGY STRATEGY REVIEWS, 2019, 24 :38-50
[10]   Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery [J].
Hagos, Teklay Mezgebe ;
Hagos, Tesfaye Teka ;
Bezabh, Hailemariam Kassa ;
Berhe, Gebregziabher Brhane ;
Abrha, Ljalem Hadush ;
Chiu, Shuo-Feng ;
Huang, Chen-Jui ;
Su, Wei-Nien ;
Dai, Hongjie ;
Hwang, Bing Joe .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) :10722-10733