Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity

被引:18
作者
Du Xinhua [1 ]
Li Yang [1 ]
Yin Hui [1 ]
Xiang Quanjun [1 ]
机构
[1] Huazhong Agr Univ, Coll Resources & Environm, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
TiO2; nanosheet; Layered structure; Au nanoparticle; Plasma; Photocatalytic H-2 production; DOMINANT; 001; FACETS; VISIBLE-LIGHT; H-2; PRODUCTION; ABSORPTION PROPERTIES; ORGANIC POLLUTANTS; GOLD NANOPARTICLES; TIO2; NANOPARTICLES; TITANIA NANOSHEETS; GRAPHENE; EVOLUTION;
D O I
10.3866/PKU.WHXB201708283
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Au/TiO2/MoS2 plasmonic composite photocatalysts were synthesized via deposition-precipitation with urea. The photocatalytic activities of the prepared samples were evaluated by performing hydrogen production experiments under Xe lamp irradiation with a 10% (phi, volume fraction) glycerol aqueous solution as the sacrificial agent. The results showed that the optimal content of MoS2 in the Au/TiO2/MoS2 composite is 0.1% (w, mass fraction) and the corresponding H-2 production rate was 708.85 mu mol center dot h(-1), which was almost 11 times higher than that of TM6.0 with the strongest photocatalytic activity in the all binary TiO2/MoS2 composites. The enhanced photocatalytic activity of the ternary Au/TiO2/MoS2 composites is mainly due to the surface plasmon resonance of the supported Au nanoparticles absorbed on the TiO2/MoS2 layered composite, which show an intense absorption maximum centered around 550-560 nm and induce the photoexcitation of electrons. Meanwhile, the electrons excited by surface plasmon resonance of Au could be injected into the conduction band of TiO2, and they were then transferred to the edges of MoS2 for catalyzing the production of H-2.
引用
收藏
页码:414 / 423
页数:10
相关论文
共 42 条
[1]   The Hydrogen Issue [J].
Armaroli, Nicola ;
Balzani, Vincenzo .
CHEMSUSCHEM, 2011, 4 (01) :21-36
[2]   Potential importance of hydrogen as a future solution to environmental and transportation problems [J].
Balat, Mustafa .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (15) :4013-4029
[3]   One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis: Application in photocatalysis [J].
Bouhadoun, Sarah ;
Guillard, Chantal ;
Dapozze, Frederic ;
Singh, Sukhvir ;
Amans, David ;
Boucle, Johann ;
Herlin-Boime, Nathalie .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 174 :367-375
[4]   Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports [J].
Chen, Xi ;
Zhu, Huai-Yong ;
Zhao, Jin-Cai ;
Zheng, Zhan-Feng ;
Gao, Xue-Ping .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (29) :5353-5356
[5]   Preparation and Properties of N-F Co-Doped TiO2 Photocatalyst with Wide Range Light Response and Multipore Structure from Ionic Liquid-Water Mixture Solvent [J].
Chen Xiao-Yun ;
Lu Dong-Fang ;
Huang Jin-Feng ;
Lu Yan-Feng ;
Zheng Jian-Qiang .
ACTA PHYSICO-CHIMICA SINICA, 2012, 28 (01) :161-169
[6]   The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials [J].
Chen, Xiaobo ;
Burda, Clemens .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (15) :5018-+
[7]   Au-Nanoparticle-Loaded Graphitic Carbon Nitride Nanosheets: Green Photocatalytic Synthesis and Application toward the Degradation of Organic Pollutants [J].
Cheng, Ningyan ;
Tian, Jingqi ;
Liu, Qian ;
Ge, Chenjiao ;
Qusti, Abdullab H. ;
Asiri, Abdullah M. ;
Al-Youbi, Abdulrahman O. ;
Sun, Xuping .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) :6815-6819
[8]   Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation [J].
Dai, Kai ;
Lu, Luhua ;
Liang, Changhao ;
Liu, Qi ;
Zhu, Guangping .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 156 :331-340
[9]   Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties [J].
Han, Xiguang ;
Kuang, Qin ;
Jin, Mingshang ;
Xie, Zhaoxiong ;
Zheng, Lansun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (09) :3152-+
[10]   Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution [J].
Hinnemann, B ;
Moses, PG ;
Bonde, J ;
Jorgensen, KP ;
Nielsen, JH ;
Horch, S ;
Chorkendorff, I ;
Norskov, JK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) :5308-5309