Enhanced energy-constrained quantum communication over bosonic Gaussian channels

被引:19
作者
Noh, Kyungjoo [1 ,2 ,3 ]
Pirandola, Stefano [4 ,5 ]
Jiang, Liang [1 ,2 ,3 ,6 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[2] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[3] Yale Univ, Yale Quantum Inst, New Haven, CT 06520 USA
[4] Univ York, Comp Sci & York Ctr Quantum Technol, York YO10 5GH, N Yorkshire, England
[5] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] Univ Chicago, Pritzker Sch Mol Engn, 5640 South Ellis Ave, Chicago, IL 60637 USA
基金
英国工程与自然科学研究理事会;
关键词
CAPACITY; ENTANGLEMENT; INFORMATION; TRANSMISSION; PURIFICATION; ENTROPY;
D O I
10.1038/s41467-020-14329-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum communication is an important branch of quantum information science, promising unconditional security to classical communication and providing the building block of a future large-scale quantum network. Noise in realistic quantum communication channels imposes fundamental limits on the communication rates of various quantum communication tasks. It is therefore crucial to identify or bound the quantum capacities of a quantum channel. Here, we consider Gaussian channels that model energy loss and thermal noise errors in realistic optical and microwave communication channels and study their various quantum capacities in the energy-constrained scenario. We provide improved lower bounds to various energy-constrained quantum capacities of these fundamental channels and show that higher communication rates can be attained than previously believed. Specifically, we show that one can boost the transmission rates of quantum information and private classical information by using a correlated multi-mode thermal state instead of the single-mode thermal state of the same energy. The amount of information that a quantum channel can transmit is fundamentally bounded by the amount of noise in the channel. Here, the authors consider the realistic case with loss and thermal noise errors and prove that correlated multi-mode thermal states can achieve higher rates than single-mode ones.
引用
收藏
页数:10
相关论文
共 64 条
[1]   Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels [J].
Arikan, Erdal .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) :3051-3073
[2]   On-demand quantum state transfer and entanglement between remote microwave cavity memories [J].
Axline, Christopher J. ;
Burkhart, Luke D. ;
Pfaff, Wolfgang ;
Zhang, Mengzhen ;
Chou, Kevin ;
Campagne-Ibarcq, Philippe ;
Reinhold, Philip ;
Frunzio, Luigi ;
Girvin, S. M. ;
Jiang, Liang ;
Devoret, M. H. ;
Schoelkopf, R. J. .
NATURE PHYSICS, 2018, 14 (07) :705-+
[3]   On quantum fidelities and channel capacities [J].
Barnum, H ;
Knill, E ;
Nielsen, MA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1317-1329
[4]   Information transmission through a noisy quantum channel [J].
Barnum, H ;
Nielsen, MA ;
Schumacher, B .
PHYSICAL REVIEW A, 1998, 57 (06) :4153-4175
[5]  
Bausch J., 2018, QUANTUM CODES NEURAL
[6]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[7]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[8]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[9]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[10]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383