Parametric generation of spin waves in nanoscaled magnonic conduits

被引:13
|
作者
Heinz, Bjoern [1 ,2 ]
Mohseni, Morteza [1 ,2 ]
Lentfert, Akira [1 ,2 ]
Verba, Roman [3 ]
Schneider, Michael [1 ,2 ]
Laegel, Bert [4 ]
Levchenko, Khrystyna [5 ]
Braecher, Thomas [1 ,2 ]
Dubs, Carsten [6 ]
V. Chumak, Andrii [5 ]
Pirro, Philipp [1 ,2 ]
机构
[1] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[2] Tech Univ Kaiserslautern, Landesforsch Zentrum OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Inst Magnetism, UA-03142 Kiev, Ukraine
[4] Tech Univ Kaiserslautern, Nano Structuring Ctr, D-67663 Kaiserslautern, Germany
[5] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[6] INNOVENT EV Technol Entwicklung, D-07745 Jena, Germany
基金
新加坡国家研究基金会; 奥地利科学基金会; 欧洲研究理事会;
关键词
FERROMAGNETIC-FILMS; AMPLIFICATION;
D O I
10.1103/PhysRevB.105.144424
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The research field of magnonics proposes a low-energy wave-logic computation technology based on spin waves to complement the established complementary metal-oxide-semiconductor technology and provide a basis for emerging unconventional computation architectures. However, magnetic damping is a limiting factor for all-magnonic logic circuits and multidevice networks, ultimately rendering mechanisms to efficiently manipulate and amplify spin waves a necessity. In this regard, parallel pumping is a versatile tool since it allows one to selectively generate and amplify spin waves. While extensively studied in microscopic systems, nanoscaled systems are lacking investigation to assess the feasibility and potential future use of parallel pumping in magnonics. Here, we investigate a longitudinally magnetized 100-nm-wide magnonic nanoconduit using spaceand time-resolved microfocused Brillouin-light-scattering spectroscopy. Employing parallel pumping to generate spin waves, we observe that the nonresonant excitation of dipolar spin waves is favored over the resonant excitation of short wavelength exchange spin waves. In addition, we utilize this technique to access the effective spin-wave relaxation time of an individual nanoconduit, observing a large relaxation time up to 115.0 ?? (76) ns. Despite the significant decrease of the pumping efficiency in the investigated nanoconduit, a reasonably small threshold is found rendering parallel pumping feasible on the nanoscale.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] True amplification of spin waves in magnonic nano-waveguides
    H. Merbouche
    B. Divinskiy
    D. Gouéré
    R. Lebrun
    A. El Kanj
    V. Cros
    P. Bortolotti
    A. Anane
    S. O. Demokritov
    V. E. Demidov
    Nature Communications, 15
  • [32] Propagation of Spin-Wave Packets in Individual Nanosized Yttrium Iron Garnet Magnonic Conduits
    Heinz, Bjoern
    Braecher, Thomas
    Schneider, Michael
    Wang, Qi
    Laegel, Bert
    Friedel, Anna M.
    Breitbach, David
    Steinert, Steffen
    Meyer, Thomas
    Kewenig, Martin
    Dubs, Carsten
    Pirro, Philipp
    Chumak, Andrii, V
    NANO LETTERS, 2020, 20 (06) : 4220 - 4227
  • [33] Parametric Generation of Propagating Spin Waves in Ultrathin Yttrium Iron Garnet Waveguides
    Mohseni, Morteza
    Kewenig, Martin
    Verba, Roman
    Wang, Qi
    Schneider, Michael
    Heinz, Bjoern
    Kohl, Felix
    Dubs, Carsten
    Laegel, Bert
    Serga, Alexander A.
    Hillebrands, Burkard
    Chumak, Andrii V.
    Pirro, Philipp
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (04):
  • [34] Magnonic crystals-Prospective structures for shaping spin waves in nanoscale
    Rychly, J.
    Gruszecki, P.
    Mruczkiewicz, M.
    Klos, J. W.
    Mamica, S.
    Krawczyk, M.
    LOW TEMPERATURE PHYSICS, 2015, 41 (10) : 745 - 759
  • [35] Efficient Modulation of Spin Waves in Two - Dimensional Octagonal Magnonic Crystal
    Choudhury, Samiran
    Barman, Saswati
    Otani, YoshiChika
    Barman, Anjan
    ACS NANO, 2017, 11 (09) : 8814 - 8821
  • [36] Conversion of magnetostatic spin waves propagating through a junction of magnonic waveguides
    Grishin, S. V.
    Davies, C.
    Sadovnikov, A.
    Kruglyak, V.
    Romanenko, D.
    Sharaevsky, Y. P.
    Nikitov, S. A.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [37] Spin waves in YIG based magnonic networks: Design and technological aspects
    Khivintsev, Y., V
    Sakharov, V. K.
    Kozhevnikov, A., V
    Dudko, G. M.
    Filimonov, Y. A.
    Khitun, A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 545
  • [38] Spin waves in alloys at finite temperatures: Application to the FeCo magnonic crystal
    Paischer, Sebastian
    Buczek, Pawel A.
    Buczek, Nadine
    Eilmsteiner, David
    Ernst, Arthur
    PHYSICAL REVIEW B, 2021, 104 (02)
  • [39] Effect of magnetization pinning on the spectrum of spin waves in magnonic antidot waveguides
    Klos, J. W.
    Kumar, D.
    Romero-Vivas, J.
    Fangohr, H.
    Franchin, M.
    Krawczyk, M.
    Barman, A.
    PHYSICAL REVIEW B, 2012, 86 (18)
  • [40] Nonreciprocal Spin Waves in a Magnonic Crystal with In-Plane Static Magnetization
    Verba, Roman
    Bankowski, Elena
    Meitzler, Thomas
    Tiberkevich, Vasil
    Slavin, Andrei
    SPIN, 2016, 6 (04)