Rational Design and Synthesis of Nickel Niobium Oxide with High-Rate Capability and Cycling Stability in a Wide Temperature Range

被引:57
作者
Lv, Changpeng [1 ,2 ]
Lin, Chunfu [1 ]
Zhao, X. S. [3 ]
机构
[1] Qingdao Univ, Sch Mat Sci & Engn, Inst Mat Energy & Environm, Qingdao 266071, Peoples R China
[2] Bengbu Univ, Sch Mat & Chem Engn, Anhui Prov Engn Lab Silicon Based Mat Engn Techno, Res Ctr Silicon Based Mat Anhui, Bengbu 233030, Peoples R China
[3] Univ Queensland, Sch Chem Engn, St Lucia, Qld 4072, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
anodes; in-situ XRD; lithium-ion batteries; nickel niobium oxide; wide temperature range; LITHIUM-ION BATTERIES; ANODE; DIFFRACTION; STORAGE;
D O I
10.1002/aenm.202102550
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conductive nickel niobium oxide (Ni2Nb34O87) is rationally designed and synthesized as a safe anode material for lithium-ion storage. Ni2Nb34O87 exhibits high-rate capability and cycling stability in the temperature range between -10 and 60 degrees C. At 25 degrees C, it delivers reversible specific capacities of 339 mAh g(-1) at 0.1C with 98.1% capacity retention after 1000 cycles at 20C. At -10 degrees C, it displays a reversible capacity of 207 mAh g(-1) at 0.1C with 64.0% capacity retention when the C-rate increases from 0.5C to 2C and no capacity decay after 1000 cycles at 2C. At 60 degrees C, it exhibits a reversible capacity of 224 mAh g(-1) at 0.1C with 65.3% capacity retention when the C-rate increases from 0.5C to 10C and 78.7% capacity is maintained after 1000 cycles at 10C. In-situ X-ray diffraction measurements combined with Rietveld refinements reveal that the interlayer spacing of Ni2Nb34O87 with a shear ReO3-type layered structure is relatively large, effectively facilitating lithium-ion transport and storage with 6.71% unit-cell-volume expansion upon lithiation. This new anode material holds great promise for lithium-ion batteries working in a wide temperature range.
引用
收藏
页数:10
相关论文
共 31 条
[1]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[2]   To Be or Not To Be Pseudocapacitive? [J].
Brousse, Thierry ;
Belanger, Daniel ;
Long, Jeffrey W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5185-A5189
[3]   Requirements for Enabling Extreme Fast Charging of High Energy Density Li-Ion Cells while Avoiding Lithium Plating [J].
Colclasure, Andrew M. ;
Dunlop, Alison R. ;
Trask, Stephen E. ;
Polzin, Bryant J. ;
Jansen, Andrew N. ;
Smith, Kandler .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) :A1412-A1424
[4]   A low-strain V3Nb17O50 anode compound for superior Li+ storage [J].
Fu, Qingfeng ;
Zhu, Xiangzhen ;
Li, Renjie ;
Liang, Guisheng ;
Luo, Lijie ;
Chen, Yongjun ;
Ding, Yuanli ;
Lin, Chunfu ;
Wang, Kuikui ;
Zhao, Xiu Song .
ENERGY STORAGE MATERIALS, 2020, 30 :401-411
[5]   Ionic and Electronic Conduction in TiNb2O7 [J].
Griffith, Kent J. ;
Seymour, Ieuan D. ;
Hope, Michael A. ;
Butala, Megan M. ;
Lamontagne, Leo K. ;
Preefer, Molleigh B. ;
Kocer, Can P. ;
Henkelman, Graeme ;
Morris, Andrew J. ;
Cliffe, Matthew J. ;
Dutton, Sian E. ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (42) :16706-16725
[6]   Niobium tungsten oxides for high-rate lithium-ion energy storage [J].
Griffith, Kent J. ;
Wiaderek, Kamila M. ;
Cibin, Giannantonio ;
Marbella, Lauren E. ;
Grey, Clare P. .
NATURE, 2018, 559 (7715) :556-+
[7]   Direct Observation of Lithium Staging in Partially Delithiated LiFePO4 at Atomic Resolution [J].
Gu, Lin ;
Zhu, Changbao ;
Li, Hong ;
Yu, Yan ;
Li, Chilin ;
Tsukimoto, Susumu ;
Maier, Joachim ;
Ikuhara, Yuichi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (13) :4661-4663
[8]   New Anode Framework for Rechargeable Lithium Batteries [J].
Han, Jian-Tao ;
Huang, Yun-Hui ;
Goodenough, John B. .
CHEMISTRY OF MATERIALS, 2011, 23 (08) :2027-2029
[9]   Ti2Nb2xO4+5x anode materials for lithium-ion batteries: a comprehensive review [J].
Hu, Lei ;
Luo, Lijie ;
Tang, Lingfei ;
Lin, Chunfu ;
Li, Renjie ;
Chen, Yongjun .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (21) :9799-9815
[10]   Capacity Loss Mechanism of the Li4Ti5O12 Microsphere Anode of Lithium-Ion Batteries at High Temperature and Rate Cycling Conditions [J].
Huang, Feifeng ;
Ma, Jiaming ;
Xia, Heyi ;
Huang, Yanfei ;
Zhao, Liang ;
Su, Shiming ;
Kang, Feiyu ;
He, Yan-Bing .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (40) :37357-37364