Computer-assisted proof for the stationary solution existence of the Navier-Stokes equation over 3D domains

被引:3
作者
Liu, Xuefeng [1 ]
Nakao, Mitsuhiro T. [2 ]
Oishi, Shin'ichi [2 ]
机构
[1] Niigata Univ, Niigata, Japan
[2] Waseda Univ, Tokyo, Japan
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2022年 / 108卷
基金
日本学术振兴会;
关键词
Navier-Stokes equation; Computer-assisted proof; Finite element method; Quantitative error estimation; NUMERICAL VERIFICATION; A-POSTERIORI; INVERTIBILITY; OPERATOR; BOUNDS;
D O I
10.1016/j.cnsns.2021.106223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a computer-assisted solution existence verification method for the stationary Navier-Stokes equation over general 3D domains. The proposed method verifies that the exact solution as the fixed point of the Newton iteration exists around the approximate solution through rigorous computation and error estimation. The explicit values of quantities required by applying the fixed-point theorem are obtained by utilizing newly developed quantitative error estimation for finite element solutions to boundary value problems and eigenvalue problems of the Stokes equation. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 38 条
[1]  
Girault V., 1986, FINITE ELEMENT METHO
[2]  
Hake J., 2015, Arch. Num. Softw, V3, DOI DOI 10.11588/ANS.2015.100.20553
[3]  
Kantorovich L. V., 2014, Functional Analysis
[4]  
Kantorovich L. V., 1964, INT SERIES MONOGRAPH
[5]  
Kikuchi F, 2007, P COMP ENG C, P12
[6]   Remarks on a posteriori error estimation for finite element solutions [J].
Kikuchi, Fumio ;
Saito, Hironobu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 199 (02) :329-336
[7]  
Kobayashi K, 2013, EMERG TOP DIFFER EQU, P54
[8]  
Kobayashi K., 2015, P INT C APPL MATH 20, P110
[9]  
Kobayashi K., 2011, RIMS KOKYUROKU, V1733, P58
[10]  
Liu X., SOLUTION VERIFICATIO