Computer-Vision-Based Approach to Classify and Quantify Flaws in Li-Ion Electrodes

被引:7
作者
Daemi, Sohrab R. [1 ]
Tan, Chun [1 ]
Tranter, Thomas G. [1 ]
Heenan, Thomas M. M. [1 ,2 ]
Wade, Aaron [1 ,2 ]
Salinas-Farran, Luis [1 ]
Llewellyn, Alice, V [1 ,2 ]
Lu, Xuekun [1 ]
Matruglio, Alessia [1 ]
Brett, Daniel J. L. [1 ,2 ]
Jervis, Rhodri [1 ,2 ]
Shearing, Paul R. [1 ,2 ]
机构
[1] UCL, Electrochem Innovat Lab, Dept Chem Engn, London WC1E 7JE, England
[2] Harwell Sci & Innovat Campus, Faraday Inst, Quad One, Didcot OX11 0RA, Oxon, England
基金
“创新英国”项目;
关键词
computer vision; convolutional networks; lithium-ion batteries; mask R-CNN; nano X-ray tomography; BATTERY ELECTRODES; LITHIUM; CATHODE; STATE;
D O I
10.1002/smtd.202200887
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
X-ray computed tomography (X-ray CT) is a non-destructive characterization technique that in recent years has been adopted to study the microstructure of battery electrodes. However, the often manual and laborious data analysis process hinders the extraction of useful metrics that can ultimately inform the mechanisms behind cycle life degradation. This work presents a novel approach that combines two convolutional neural networks to first locate and segment each particle in a nano-CT LiNiMnCoO2 (NMC) electrode dataset, and successively classifies each particle according to the presence of flaws or cracks within its internal structure. Metrics extracted from the computer vision segmentation are validated with respect to traditional threshold-based segmentation, confirming that flawed particles are correctly identified as single entities. Successively, slices from each particle are analyzed by a pre-trained classifier to detect the presence of flaws or cracks. The models are used to quantify microstructural evolution in uncycled and cycled NMC811 electrodes, as well as the number of flawed particles in a NMC622 electrode. As a proof-of-concept, a 3-phase segmentation is also presented, whereby each individual flaw is segmented as a separate pixel label. It is anticipated that this analysis pipeline will be widely used in the field of battery research and beyond.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Image-based defect detection in lithium-ion battery electrode using convolutional neural networks [J].
Badmos, Olatomiwa ;
Kopp, Andreas ;
Bernthaler, Timo ;
Schneider, Gerhard .
JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (04) :885-897
[2]   Laser-preparation of geometrically optimised samples for X-ray nano-CT [J].
Bailey, J. J. ;
Heenan, T. M. M. ;
Finegan, D. P. ;
Lu, X. ;
Daemi, S. R. ;
Iacoviello, F. ;
Backeberg, N. R. ;
Taiwo, O. O. ;
Brett, D. J. L. ;
Atkinson, A. ;
Shearing, P. R. .
JOURNAL OF MICROSCOPY, 2017, 267 (03) :384-396
[3]  
Chen, 2019, ADV INTELL SYST, V1
[4]   TauFactor: An open-source application for calculating tortuosity factors from tomographic data [J].
Cooper S.J. ;
Bertei A. ;
Shearing P.R. ;
Kilner J.A. ;
Brandon N.P. .
Cooper, S.J. (sjc08@ic.ac.uk), 1600, Elsevier B.V., Netherlands (05) :203-210
[5]   Visualizing the Carbon Binder Phase of Battery Electrodes in Three Dimensions [J].
Daemi, Sohrab R. ;
Tan, Chun ;
Volkenandt, Tobias ;
Cooper, Samuel J. ;
Palacios-Padros, Anna ;
Cookson, James ;
Brett, Dan J. L. ;
Shearing, Paul R. .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (08) :3702-3710
[6]  
Dahn, 2002, HDB BATTER
[7]   A method for state of energy estimation of lithium-ion batteries based on neural network model [J].
Dong, Guangzhong ;
Zhang, Xu ;
Zhang, Chenbin ;
Chen, Zonghai .
ENERGY, 2015, 90 :879-888
[8]   The VIA Annotation Software for Images, Audio and Video [J].
Dutta, Abhishek ;
Zisserman, Andrew .
PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, :2276-2279
[9]   Mahalanobis distances for ecological niche modelling and outlier detection: implications of sample size, error, and bias for selecting and parameterising a multivariate location and scatter method [J].
Etherington, Thomas R. .
PEERJ, 2021, 9
[10]   Spatially Resolving Lithiation in Silicon-Graphite Composite Electrodes via in Situ High-Energy X-ray Diffraction Computed Tomography [J].
Finegan, Donal P. ;
Vamvakeros, Antonis ;
Cao, Lei ;
Tan, Chun ;
Heenan, Thomas M. M. ;
Daemi, Sohrab R. ;
Jacques, Simon D. M. ;
Beale, Andrew M. ;
Di Michiel, Marco ;
Smith, Kandler ;
Brett, Dan J. L. ;
Shearing, Paul R. ;
Ban, Chunmei .
NANO LETTERS, 2019, 19 (06) :3811-3820