Lipid Nanoparticle Technologies for Nucleic Acid Delivery: A Nanoarchitectonics Perspective

被引:61
作者
Ferhan, Abdul Rahim [1 ]
Park, Soohyun [1 ]
Park, Hyeonjin [1 ,2 ]
Tae, Hyunhyuk [1 ]
Jackman, Joshua A. [2 ]
Cho, Nam-Joon [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Sungkyunkwan Univ, Sch Chem Engn & Translat Nanobiosci, Res Ctr, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
drug delivery; lipid nanoparticle; microfluidics; nanoarchitectonics; vaccine; MESSENGER-RNA DELIVERY; HIGH-DENSITY-LIPOPROTEINS; LIPOSOME-DNA COMPLEXES; DIRECT GENE-TRANSFER; IN-VIVO; TRANSFECTION EFFICIENCY; BICELLAR SYSTEMS; CATIONIC LIPIDS; STRATUM-CORNEUM; CELLULAR UPTAKE;
D O I
10.1002/adfm.202203669
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lipid-based nanoparticles have emerged as a clinically viable platform technology to deliver nucleic acids for a wide range of healthcare applications. Within this scope, one of the most exciting areas of recent progress and future innovation potential lies in the material science of lipid-based nanoparticles, both to refine existing nanoparticle strategies and to develop new ones. Herein, the latest efforts to develop next-generation lipid-based nanoparticles are covered by taking a nanoarchitectonics perspective and the design, nucleic acid encapsulation methods, scalable production, and application prospects are critically analyzed for three classes of lipid-based nanoparticles: 1) traditional lipid nanoparticles (LNPs); 2) lipoplexes; and 3) bicelles. Particular focus is placed on rationalizing how molecular self-assembly principles enable advanced functionalities along with comparing and contrasting the different nanoarchitectures. The current development status of each class of lipid-based nanoparticle is also evaluated and possible future directions in terms of overcoming clinical translation challenges and realizing new application opportunities are suggested.
引用
收藏
页数:38
相关论文
共 362 条
  • [1] Evaluation of Efficacy, Biodistribution, and Inflammation for a Potent siRNA Nanoparticle: Effect of Dexamethasone Co-treatment
    Abrams, Marc T.
    Koser, Martin L.
    Seitzer, Jessica
    Williams, Stephanie C.
    DiPietro, Martha A.
    Wang, Weimin
    Shaw, Andrew W.
    Mao, Xianzhi
    Jadhav, Vasant
    Davide, Joseph P.
    Burke, Paul A.
    Sachs, Alan B.
    Stirdivant, Steven M.
    Sepp-Lorenzino, Laura
    [J]. MOLECULAR THERAPY, 2010, 18 (01) : 171 - 180
  • [2] mRNA Lipoplexes with Cationic and Ionizable α-Amino-lipophosphonates: Membrane Fusion, Transfection, mRNA Translation and Conformation
    Akhter, Sohail
    Berchel, Mathieu
    Jaffres, Paul-Alain
    Midoux, Patrick
    Pichon, Chantal
    [J]. PHARMACEUTICS, 2022, 14 (03)
  • [3] The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
    Akinc, Akin
    Maier, Martin A.
    Manoharan, Muthiah
    Fitzgerald, Kevin
    Jayaraman, Muthusamy
    Barros, Scott
    Ansell, Steven
    Du, Xinyao
    Hope, Michael J.
    Madden, Thomas D.
    Mui, Barbara L.
    Semple, Sean C.
    Tam, Ying K.
    Ciufolini, Marco
    Witzigmann, Dominik
    Kulkarni, Jayesh A.
    van der Meel, Roy
    Cullis, Pieter R.
    [J]. NATURE NANOTECHNOLOGY, 2019, 14 (12) : 1084 - 1087
  • [4] Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms
    Akinc, Akin
    Querbes, William
    De, Soma
    Qin, June
    Frank-Kamenetsky, Maria
    Jayaprakash, K. Narayanannair
    Jayaraman, Muthusamy
    Rajeev, Kallanthottathil G.
    Cantley, William L.
    Dorkin, J. Robert
    Butler, James S.
    Qin, LiuLiang
    Racie, Timothy
    Sprague, Andrew
    Fava, Eugenio
    Zeigerer, Anja
    Hope, Michael J.
    Zerial, Marino
    Sah, Dinah W. Y.
    Fitzgerald, Kevin
    Tracy, Mark A.
    Manoharan, Muthiah
    Koteliansky, Victor
    de Fougerolles, Antonin
    Maier, Martin A.
    [J]. MOLECULAR THERAPY, 2010, 18 (07) : 1357 - 1364
  • [5] Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines
    Aldosari, Basmah N.
    Alfagih, Iman M.
    Almurshedi, Alanood S.
    [J]. PHARMACEUTICS, 2021, 13 (02) : 1 - 29
  • [6] Liposomal drug delivery systems: From concept to clinical applications
    Allen, Theresa M.
    Cullis, Pieter R.
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2013, 65 (01) : 36 - 48
  • [7] Lipoplex size determines lipofection efficiency with or without serum
    Almofti, MR
    Harashima, H
    Shinohara, Y
    Almofti, A
    Li, WH
    Kiwada, H
    [J]. MOLECULAR MEMBRANE BIOLOGY, 2003, 20 (01) : 35 - 43
  • [8] Dual-Targeting and Stimuli-Triggered Liposomal Drug Delivery in Cancer Treatment
    AlSawaftah, Nour
    Pitt, William G.
    Husseini, Ghaleb A.
    [J]. ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE, 2021, 4 (03) : 1028 - 1049
  • [9] Review-Miniaturized and Microfluidic Devices for Automated Nanoparticle Synthesis
    Amreen, Khairunnisa
    Goel, Sanket
    [J]. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2021, 10 (01)
  • [10] Microfluidic Preparation of Liposomes to Determine Particle Size Influence on Cellular Uptake Mechanisms
    Andar, Abhay U.
    Hood, Renee R.
    Vreeland, Wyatt N.
    DeVoe, Don L.
    Swaan, Peter W.
    [J]. PHARMACEUTICAL RESEARCH, 2014, 31 (02) : 401 - 413