Skyline;
Information extraction;
Data analysis;
Parallel computing;
MULTICORE;
QUERIES;
D O I:
10.1007/s11227-017-2064-0
中图分类号:
TP3 [计算技术、计算机技术];
学科分类号:
0812 ;
摘要:
Scaling skyline queries over high-dimensional datasets remains to be challenging due to the fact that most existing algorithms assume dimensional independence when establishing the worst-case complexity by discarding correlation distribution. In this paper, we present HashSkyline, a systematic and correlation-aware approach for scaling skyline queries over high-dimensional datasets with three novel features: First, it offers a fast hash-based method to prune non-skyline points by utilizing data correlation characteristics and speed up the overall skyline evaluation for correlated datasets. Second, we develop , which can dramatically reduce the response time for anti-correlated and independent datasets by capitalizing on the parallel processing power of GPUs. Third, the HashSkyline approach uses the pivot cell-based mechanism combined with the correlation threshold to determine the correlation distribution characteristics for a given dataset, enabling adaptive configuration of HashSkyline for skyline query evaluation by auto-switching of and . We evaluate the validity of HashSkyline using both synthetic datasets and real datasets. Our experiments show that HashSkyline consumes significantly less pre-processing cost and achieves significantly higher overall query performance, compared to existing state-of-the-art algorithms.