Another Mean Value Theorem Solution

被引:0
作者
Bradie, Brian
Chen, Hongwei
Ali, A.
Amdeberhan, T.
Andersen, K. F.
Botsko, M. W.
Bracken, P.
Breeding, K.
Bursac, K.
Davis, C.
McClanahan, T.
Muller, R.
Burdick, B. S.
Dalyay, P. P.
Dickerson, J.
Harris, D.
Young, A.
Dodson, J.
Ionascu, E. J.
Karaivanov, B.
Vassilev, T. S.
Kouba, O.
Lindstrom, P. W.
Lossers, O. P.
Macias, G.
Smith, R.
Mikayelyan, V.
Omarjee, M.
Omarjee, M.
Tauraso, R.
Perfetti, P.
Plaza, A.
Rutherford-Rand, V.
Stenger, A.
Stong, R.
Wiandt, T.
Phu Cuong Le Van
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:755 / 756
页数:2
相关论文
共 50 条
[31]   Exact Solution to the Mean Value Theorem Applied to the Maximum Power Point Estimation [J].
Tirado-Serrato, Jose G. G. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2023, 13 (05) :750-755
[32]   What is The Mean Value Theorem?(1) [J].
梁宇学 .
中学生数学, 2010, (13) :50-50
[33]   A mean value theorem for systems of integrals [J].
Jankovic, Slobodanka ;
Merkle, Milan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) :334-339
[34]   On Flett’s mean value theorem [J].
Ondrej Hutník ;
Jana Molnárová .
Aequationes mathematicae, 2015, 89 :1133-1165
[35]   ON VINOGRADOV MEAN-VALUE THEOREM [J].
WOOLEY, TD .
MATHEMATIKA, 1992, 39 (78) :379-399
[36]   ON THE MEAN-VALUE THEOREM FOR INTEGRALS [J].
JACOBSON, B .
AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (05) :300-301
[37]   A new mean value theorem for integrals [J].
Mercer, A. McD. .
MATHEMATICAL GAZETTE, 2013, 97 (540) :510-512
[38]   On the mean value theorem for semidifferentiable functions [J].
Castellani, Marco ;
Pappalardo, Massimo .
JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (04) :503-508
[39]   What is The Mean Value Theorem?(2) [J].
High School Attached CNU Yuxue Liang .
中学生数学, 2010, (15) :50-50
[40]   A mean value theorem for metric spaces [J].
Carvalho Neto, P. M. ;
Liboni Filho, P. A. .
MATHEMATISCHE NACHRICHTEN, 2015, 288 (5-6) :509-524