Ultrahigh Photogain Short-Wave Infrared Detectors Enabled by Integrating Graphene and Hyperdoped Silicon

被引:30
作者
Jiang, Hao [1 ,2 ]
Wang, Mao [3 ]
Fu, Jintao [1 ,4 ]
Li, Zhancheng [1 ]
Shaikh, Mohd Saif [3 ]
Li, YunJie [5 ,6 ]
Nie, Changbin [1 ,4 ]
Sun, Feiying [1 ]
Tang, Linlong [1 ]
Yang, Jun [1 ]
Qin, Tianshi [7 ,8 ]
Zhou, Dahua [1 ]
Shen, Jun [1 ]
Sun, Jiuxun [1 ,2 ]
Feng, Shuanglong
Zhu, Meng [9 ]
Kentsch, Ulrich [3 ]
Zhou, Shengqiang [3 ]
Shi, Haofei [1 ]
Wei, Xingzhan [1 ,4 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China
[3] Helmholtz Zent Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01328 Dresden, Germany
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Chongqing Univ Posts & Telecommun, Chongqing 400065, Peoples R China
[6] Univ Chinese Acad Sci, Chongqing Sch, Chongqing 400714, Peoples R China
[7] Nanjing Tech Univ, Key Lab Flexible Elect, Nanjing 210009, Peoples R China
[8] Nanjing Tech Univ, Inst Adv Mat, Nanjing 210009, Peoples R China
[9] TianJin Jinhang Insitute Tech Phys, Tianjin 300192, Peoples R China
基金
国家重点研发计划;
关键词
short-wave infrared detector; lifetime; built-in potential; photogain; graphene; Te-hyperdoped Si; RESPONSIVITY; NANOWIRES;
D O I
10.1021/acsnano.2c04704
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Highly sensitive short-wave infrared (SWIR) detectors, compatible with the silicon-based complementary metal oxide semiconductor (CMOS) process, are regarded as the key enabling components in the miniaturized system for weak signal detection. To date, the high photogain devices are greatly limited by a large bias voltage, low-temperature refrigeration, narrow response band, and complex fabrication processes. Here, we demonstrate high photogain detectors working in the SWIR region at room temperature, which use graphene for charge transport and Te-hyperdoped silicon (Te-Si) for infrared absorption. The prolonged lifetime of carriers, combined with the built-in potential generated at the interface between the graphene and the Te-Si, leads to an ultrahigh photogain of 10(9) at room temperature (300 K) for 1.55 mu m light. The gain can be improved to 10(12), accompanied by a noise equivalent power (NEP) of 0.08 pW Hz(-1/2) at 80 K. Moreover, the proposed device exhibits a NEP of 4.36 pW Hz(-1/2) at 300 K at the wavelength of 2.7 mu m, which is exceeding the working region of InGaAs detectors. This research shows that graphene can be used as an efficient platform for silicon-based SWIR detection and provides a strategy for the low-power, uncooled, high-gain infrared detectors compatible with the CMOS process.
引用
收藏
页码:12777 / 12785
页数:9
相关论文
共 37 条
[1]   Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors [J].
Ackerman, Matthew M. ;
Tang, Xin ;
Guyot-Sionnest, Philippe .
ACS NANO, 2018, 12 (07) :7264-7271
[2]   Graphene-Si Schottky IR Detector [J].
Amirmazlaghani, Mina ;
Raissi, Farshid ;
Habibpour, Omid ;
Vukusic, Josip ;
Stake, Jan .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2013, 49 (07) :589-594
[3]   Tunable Graphene-Silicon Heterojunctions for Ultrasensitive Photodetection [J].
An, Xiaohong ;
Liu, Fangze ;
Jung, Yung Joon ;
Kar, Swastik .
NANO LETTERS, 2013, 13 (03) :909-916
[4]   Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors [J].
Bera, Krishna Prasad ;
Haider, Golam ;
Huang, Yu-Ting ;
Roy, Pradip Kumar ;
Inbaraj, Christy Roshini Paul ;
Liao, Yu-Ming ;
Lin, Hung-I ;
Lu, Cheng-Hsin ;
Shen, Chun ;
Shih, Wan Y. ;
Shih, Wei-Heng ;
Chen, Yang-Fang .
ACS NANO, 2019, 13 (11) :12540-12552
[5]   Nanostructured black silicon and the optical reflectance of graded-density surfaces [J].
Branz, Howard M. ;
Yost, Vernon E. ;
Ward, Scott ;
Jones, Kim M. ;
To, Bobby ;
Stradins, Paul .
APPLIED PHYSICS LETTERS, 2009, 94 (23)
[6]   Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes [J].
Carey, JE ;
Crouch, CH ;
Shen, MY ;
Mazur, E .
OPTICS LETTERS, 2005, 30 (14) :1773-1775
[7]   Unipolar barrier photodetectors based on van der Waals heterostructures [J].
Chen, Yunfeng ;
Wang, Yang ;
Wang, Zhen ;
Gu, Yue ;
Ye, Yan ;
Chai, Xuliang ;
Ye, Jiafu ;
Chen, Yan ;
Xie, Runzhang ;
Zhou, Yi ;
Hu, Zhigao ;
Li, Qing ;
Zhang, Lili ;
Wang, Fang ;
Wang, Peng ;
Miao, Jinshui ;
Wang, Jianlu ;
Chen, Xiaoshuang ;
Lu, Wei ;
Zhou, Peng ;
Hu, Weida .
NATURE ELECTRONICS, 2021, 4 (05) :357-363
[8]   Photogating in Low Dimensional Photodetectors [J].
Fang, Hehai ;
Hu, Weida .
ADVANCED SCIENCE, 2017, 4 (12)
[9]   Accurate characterization of next-generation thin-film photodetectors [J].
Fang, Yanjun ;
Armin, Ardalan ;
Meredith, Paul ;
Huang, Jinsong .
NATURE PHOTONICS, 2019, 13 (01) :1-4
[10]   On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain [J].
Goykhman, Ilya ;
Sassi, Ugo ;
Desiatov, Boris ;
Mazurski, Noa ;
Milana, Silvia ;
de Fazio, Domenico ;
Eiden, Anna ;
Khurgin, Jacob ;
Shappir, Joseph ;
Levy, Uriel ;
Ferrari, Andrea C. .
NANO LETTERS, 2016, 16 (05) :3005-3013