Multivariate outlier detection and robust covariance matrix estimation -: Response

被引:163
作者
Peña, D
Prieto, FJ
机构
[1] Dept. of Stat. and Econometrics, Universidad Carlos III de Madrid
关键词
D O I
10.1198/004017001316975899
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we present a simple multivariate outlier-detection procedure and a robust estimator for the covariance matrix, based on the use of information obtained from projections onto the directions that maximize and minimize the kurtosis coefficient of the projected data. The properties of this estimator (computational cost, bias) are analyzed and compared with those of other robust estimators described in the literature through simulation studies. The performance of the outlier-detection procedure is analyzed by applying it to a set of well-known examples.
引用
收藏
页码:306 / 310
页数:5
相关论文
共 8 条
[1]  
ADROVER J, 2001, UNPUB PROJECTION EST
[2]   CLASSIFICATION INTO 2 MULTIVARIATE NORMAL-DISTRIBUTIONS WITH DIFFERENT COVARIANCE MATRICES [J].
ANDERSON, TW ;
BAHADUR, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (02) :420-&
[3]   LIMIT DISTRIBUTIONS FOR MEASURES OF MULTIVARIATE SKEWNESS AND KURTOSIS BASED ON PROJECTIONS [J].
BARINGHAUS, L ;
HENZE, N .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 38 (01) :51-69
[4]  
MACHADO SG, 1983, BIOMETRIKA, V3, P713
[5]   The kurtosis coefficient and the linear discriminant function [J].
Peña, D ;
Prieto, FJ .
STATISTICS & PROBABILITY LETTERS, 2000, 49 (03) :257-261
[6]   A fast procedure for outlier diagnostics in large regression problems [J].
Peña, D ;
Yohai, V .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (446) :434-445
[7]  
Pena D., 2001, CLUSTER IDENTIFICATI
[8]  
ROSSEEUW PJ, 1984, J AM STAT ASSOC, V79, P871