Cell-Free Protein Synthesis in Bifunctional Hyaluronan Microgels: A Strategy for In Situ Immobilization and Purification of His-Tagged Proteins

被引:8
作者
Heida, Thomas [1 ]
Koehler, Tony [1 ]
Kaufmann, Anika [1 ]
Maennel, Max J. [1 ]
Thiele, Julian [1 ]
机构
[1] Leibniz Inst Polymerforsch Dresden eV, Inst Phys Chem & Polymer Phys, Hohe Str 6, D-01069 Dresden, Germany
关键词
artificial cells; biomaterials; droplet microfluidics; microgels; protein synthesis;
D O I
10.1002/syst.201900058
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In current cell-free biotechnology, mimicking physicochemical aspects of cellular life while providing efficient protein synthesis, separation, and purification is a crucial step towards truly applicable artificial, yet cell-like, biosynthesis platforms. To achieve simultaneous synthesis and immobilization of proteins in a tailor-made environment, we link DNA encoding for histidine-tagged proteins to microfluidically prepared microgels via strain-promoted azide-alkyne cycloaddition and introduce nitrilotriacetic acid moieties that exhibit affinity towards histidine-tagged proteins upon nickel activation. After swelling the microgels in a prokaryotic protein synthesis machinery, proteins are produced and remain at the site of synthesis despite the membrane-free, open nature of the gels. The protein-loaded microgels are then separated from the complex bioreaction mixture and proteins are released by a chemical trigger. Our bifunctional microgels not only contribute to the ongoing design of artificial cells but also allow for directly linking proteins to specific DNA, which can be explored for genotype-phenotype correlation in DNA mutagenesis.
引用
收藏
页数:7
相关论文
共 47 条
[1]   Ultrahigh-throughput screening in drop-based microfluidics for directed evolution [J].
Agresti, Jeremy J. ;
Antipov, Eugene ;
Abate, Adam R. ;
Ahn, Keunho ;
Rowat, Amy C. ;
Baret, Jean-Christophe ;
Marquez, Manuel ;
Klibanov, Alexander M. ;
Griffiths, Andrew D. ;
Weitz, David A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (09) :4004-4009
[2]   Recombinant protein expression for therapeutic applications [J].
Andersen, DC ;
Krummen, L .
CURRENT OPINION IN BIOTECHNOLOGY, 2002, 13 (02) :117-123
[3]   Hyaluronic Acid Hydrogels for Biomedical Applications [J].
Burdick, Jason A. ;
Prestwich, Glenn D. .
ADVANCED MATERIALS, 2011, 23 (12) :H41-H56
[4]   In-gel expression and in situ immobilization of proteins for generation of three dimensional protein arrays in a hydrogel matrix [J].
Byun, Ju-Young ;
Lee, Kyung-Ho ;
Lee, Ka-Young ;
Kim, Min-Gon ;
Kim, Dong-Myung .
LAB ON A CHIP, 2013, 13 (05) :886-891
[5]   Cell-free protein synthesis: Applications come of age [J].
Carlson, Erik D. ;
Gan, Rui ;
Hodgman, C. Eric ;
Jewett, Michael C. .
BIOTECHNOLOGY ADVANCES, 2012, 30 (05) :1185-1194
[6]   Expression of membrane-associated proteins within single emulsion cell facsimiles [J].
Chanasakulniyom, Mayuree ;
Martino, Chiara ;
Paterson, David ;
Horsfall, Louise ;
Rosser, Susan ;
Cooper, Jonathan M. .
ANALYST, 2012, 137 (13) :2939-2943
[7]   High-throughput screening of biomolecules using cell-free gene expression systems [J].
Contreras-Llano, Luis E. ;
Tan, Cheemeng .
SYNTHETIC BIOLOGY, 2018, 3 (01)
[8]   Stochastic branching-diffusion models for gene expression [J].
Cottrell, David ;
Swain, Peter S. ;
Tupper, Paul F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (25) :9699-9704
[9]   An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets [J].
Courtois, Fabienne ;
Olguin, Luis F. ;
Whyte, Graeme ;
Bratton, Daniel ;
Huck, Wilhelm T. S. ;
Abell, Chris ;
Hollfelder, Florian .
CHEMBIOCHEM, 2008, 9 (03) :439-446
[10]   Novel hydrogels via click chemistry: Synthesis and potential biomedical applications [J].
Crescenzi, Vittorio ;
Cornelio, Lisa ;
Di Meo, Chiara ;
Nardecchia, Stefania ;
Lamanna, Raffaele .
BIOMACROMOLECULES, 2007, 8 (06) :1844-1850