Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies

被引:79
作者
Astuto, Bruno [1 ,2 ]
Flament, Io [1 ,2 ]
Namiri, Nikan K. [1 ,2 ]
Shah, Rutwik [1 ,2 ]
Bharadwaj, Upasana [1 ,2 ]
Link, Thomas M. [1 ,2 ]
Bucknor, Matthew D. [1 ,2 ]
Pedoia, Valentina [1 ,2 ,3 ]
Majumdar, Sharmila [1 ,2 ,3 ]
机构
[1] Univ Calif San Francisco, Ctr Intelligent Imaging, 1700 Fourth St,Suite 201,QB3 Bldg, San Francisco, CA 94107 USA
[2] Univ Calif San Francisco, Musculoskeletal & Quantitat Imaging Res Grp, Dept Radiol & Biomed Imaging, 1700 Fourth St,Suite 201,QB3 Bldg, San Francisco, CA 94107 USA
[3] Univ Calif San Francisco, Ctr Digital Hlth Innovat, 1700 Fourth St,Suite 201,QB3 Bldg, San Francisco, CA 94107 USA
基金
美国国家卫生研究院;
关键词
CARTILAGE; DISEASE; BURDEN; SCORE; OA;
D O I
10.1148/ryai.2021200165
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Purpose: To test the hypothesis that artificial intelligence (AI) techniques can aid in identifying and assessing lesion severity in the cartilage, bone marrow, meniscus, and anterior cruciate ligament (ACL) in the knee, improving overall MRI interreader agreement. Materials and Methods: This retrospective study was conducted on 1435 knee MRI studies (n = 294 patients; mean age, 43 years 6 15 [standard deviation]; 153 women) collected within three previous studies (from 2011 to 2014). All MRI studies were acquired using high-spatial-resolution three-dimensional fast-spin-echo CUBE sequence. Three-dimensional convolutional neural networks were developed to detect the regions of interest within MRI studies and grade abnormalities of the cartilage, bone marrow, menisci, and ACL. Evaluation included sensitivity, specificity, and Cohen linear-weighted k. The impact of AI-aided grading in intergrader agreement was assessed on an external dataset. Results: Binary lesion sensitivity reported for all tissues was between 70% and 88%. Specificity ranged from 85% to 89%. The area under the receiver operating characteristic curve for all tissues ranged from 0.83 to 0.93. Deep learning-assisted intergrader Cohen k agreement significantly improved in 10 of 16 comparisons among two attending physicians and two trainees for all tissues. Conclusion: The three-dimensional convolutional neural network had high sensitivity, specificity, and accuracy for knee-lesion-severity scoring and also increased intergrader agreement when used on an external dataset. Supplemental material is available for this article. (C) RSNA, 2021
引用
收藏
页数:12
相关论文
共 31 条
[1]   Cartilage Lesion Score: Comparison of a Quantitative Assessment Score with Established Semiquantitative MR Scoring Systems [J].
Alizai, Hamza ;
Virayavanich, Warapat ;
Joseph, Gabby B. ;
Nardo, Lorenzo ;
Liu, Felix ;
Liebl, Hans ;
Nevitt, Michael C. ;
Lynch, John A. ;
McCulloch, Charles E. ;
Link, Thomas M. .
RADIOLOGY, 2014, 271 (02) :479-487
[2]  
Arun N, 2021, medRxiv, DOI [10.1101/2020.07.28.20163899, 10.1101/2020.07.28.20163899, DOI 10.1101/2020.07.28.20163899]
[3]   Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J].
Bien, Nicholas ;
Rajpurkar, Pranav ;
Ball, Robyn L. ;
Irvin, Jeremy ;
Park, Allison ;
Jones, Erik ;
Bereket, Michael ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Halabi, Safwan ;
Zucker, Evan ;
Fanton, Gary ;
Amanatullah, Derek F. ;
Beaulieu, Christopher F. ;
Riley, Geoffrey M. ;
Stewart, Russell J. ;
Blankenberg, Francis G. ;
Larson, David B. ;
Jones, Ricky H. ;
Langlotz, Curtis P. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[4]   Current Applications and Future Impact of Machine Learning in Radiology [J].
Choy, Garry ;
Khalilzadeh, Omid ;
Michalski, Mark ;
Do, Synho ;
Samir, Anthony E. ;
Pianykh, Oleg S. ;
Geis, J. Raymond ;
Pandharipande, Pari V. ;
Brink, James A. ;
Dreyer, Keith J. .
RADIOLOGY, 2018, 288 (02) :318-328
[5]   Radiology Report Value Equation [J].
Eberhardt, Steven C. ;
Heilbrun, Marta E. .
RADIOGRAPHICS, 2018, 38 (06) :1888-1896
[6]  
Farr Ii Jack, 2013, Open Orthop J, V7, P619, DOI 10.2174/1874325001307010619
[7]   Is Weight Loss Associated with Less Progression of Changes in Knee Articular Cartilage among Obese and Overweight Patients as Assessed with MR Imaging over 48 Months? Data from the Osteoarthritis Initiative [J].
Gersing, Alexandra S. ;
Schwaiger, Benedikt J. ;
Nevitt, Michael C. ;
Joseph, Gabby B. ;
Chanchek, Nattagan ;
Guimaraes, Julio B. ;
Wamba, John Mbapte ;
Facchetti, Luca ;
McCulloch, Charles E. ;
Link, Thomas M. .
RADIOLOGY, 2017, 284 (02) :508-520
[8]   The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition [J].
Gupta, S ;
Hawker, GA ;
Laporte, A ;
Croxford, R ;
Coyte, PC .
RHEUMATOLOGY, 2005, 44 (12) :1531-1537
[9]   Artificial intelligence in radiology [J].
Hosny, Ahmed ;
Parmar, Chintan ;
Quackenbush, John ;
Schwartz, Lawrence H. ;
Aerts, Hugo J. W. L. .
NATURE REVIEWS CANCER, 2018, 18 (08) :500-510
[10]   Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score) [J].
Hunter, D. J. ;
Guermazi, A. ;
Lo, G. H. ;
Grainger, A. J. ;
Conaghan, P. G. ;
Boudreau, R. M. ;
Roemer, F. W. .
OSTEOARTHRITIS AND CARTILAGE, 2011, 19 (08) :990-1002