Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens

被引:0
作者
Fei, Peng [1 ,2 ]
Nie, Jun [1 ]
Lee, Juhyun [3 ,4 ]
Ding, Yichen [3 ,5 ]
Li, Shuoran [6 ]
Zhang, Hao [1 ]
Hagiwara, Masaya [7 ,8 ]
Yu, Tingting [2 ]
Segura, Tatiana [6 ]
Ho, Chih-Ming [8 ]
Zhu, Dan [2 ]
Hsiai, Tzung K. [3 ,5 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan, Peoples R China
[2] Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan, Peoples R China
[3] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[4] Univ Texas Arlington, Joint Dept Bioengn UT Arlington, UT Southwestern, Arlington, TX USA
[5] Univ Calif Los Angeles, Sch Med, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Chem & Biomol Engn Dept, Los Angeles, CA USA
[7] Osaka Prefecture Univ, Nanosci & Nanotechnol Res Ctr, Res Org Century 21, Osaka, Japan
[8] Univ Calif Los Angeles, Mech & Aerosp Engn Dept, Los Angeles, CA USA
关键词
light-sheet microscopy; subvoxel-resolving reconstruction; large tissue imaging; high-throughput volumetric imaging;
D O I
10.1117/1.AP.1.1.015001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A key challenge when imaging whole biomedical specimens is how to quickly obtain massive cellular information over a large field of view (FOV). We report a subvoxel light-sheet microscopy (SLSM) method enabling high-throughput volumetric imaging of mesoscale specimens at cellular resolution. A nonaxial, continuous scanning strategy is developed to rapidly acquire a stack of large-FOV images with three-dimensional (3-D) nanoscale shifts encoded. Then, by adopting a subvoxel-resolving procedure, the SLSM method models these low-resolution, cross-correlated images in the spatial domain and can iteratively recover a 3-D image with improved resolution throughout the sample. This technique can surpass the optical limit of a conventional light-sheet microscope by more than three times, with high acquisition speeds of gigavoxels per minute. By fast reconstruction of 3-D cultured cells, intact organs, and live embryos, SLSM method presents a convenient way to circumvent the trade-off between mapping large-scale tissue (> 100 mm(3)) and observing single cell (similar to 1-mu m resolution). It also eliminates the need of complicated mechanical stitching or modulated illumination, using a simple light-sheet setup and fast graphics processing unit-based computation to achieve high-throughput, high-resolution 3-D microscopy, which could be tailored for a wide range of biomedical applications in pathology, histology, neuroscience, etc.
引用
收藏
页数:13
相关论文
共 53 条
[1]  
Ahrens MB, 2013, NAT METHODS, V10, P413, DOI [10.1038/NMETH.2434, 10.1038/nmeth.2434]
[2]  
Born M., 2013, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, DOI [DOI 10.1017/CBO9781139644181, 10.1017/CBO9781139644181]
[3]   Automatic panoramic image stitching using invariant features [J].
Brown, Matthew ;
Lowe, David G. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 74 (01) :59-73
[4]   Tomographic imaging of macroscopic biomedical objects in high resolution and three dimensions using orthogonal-plane fluorescence optical sectioning [J].
Buytaert, Jan A. N. ;
Dirckx, Joris J. J. .
APPLIED OPTICS, 2009, 48 (05) :941-948
[5]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[6]   Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution [J].
Chen, Bi-Chang ;
Legant, Wesley R. ;
Wang, Kai ;
Shao, Lin ;
Milkie, Daniel E. ;
Davidson, Michael W. ;
Janetopoulos, Chris ;
Wu, Xufeng S. ;
Hammer, John A., III ;
Liu, Zhe ;
English, Brian P. ;
Mimori-Kiyosue, Yuko ;
Romero, Daniel P. ;
Ritter, Alex T. ;
Lippincott-Schwartz, Jennifer ;
Fritz-Laylin, Lillian ;
Mullins, R. Dyche ;
Mitchell, Diana M. ;
Bembenek, Joshua N. ;
Reymann, Anne-Cecile ;
Boehme, Ralph ;
Grill, Stephan W. ;
Wang, Jennifer T. ;
Seydoux, Geraldine ;
Tulu, U. Serdar ;
Kiehart, Daniel P. ;
Betzig, Eric .
SCIENCE, 2014, 346 (6208) :439-+
[7]   Structural and molecular interrogation of intact biological systems [J].
Chung, Kwanghun ;
Wallace, Jenelle ;
Kim, Sung-Yon ;
Kalyanasundaram, Sandhiya ;
Andalman, Aaron S. ;
Davidson, Thomas J. ;
Mirzabekov, Julie J. ;
Zalocusky, Kelly A. ;
Mattis, Joanna ;
Denisin, Aleksandra K. ;
Pak, Sally ;
Bernstein, Hannah ;
Ramakrishnan, Charu ;
Grosenick, Logan ;
Gradinaru, Viviana ;
Deisseroth, Karl .
NATURE, 2013, 497 (7449) :332-+
[8]   Inline hologram reconstruction with sparsity constraints [J].
Denis, Loic ;
Lorenz, Dirk ;
Thiebaut, Eric ;
Fournier, Corinne ;
Trede, Dennis .
OPTICS LETTERS, 2009, 34 (22) :3475-3477
[9]   Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy [J].
Diaspro, A ;
Federici, F ;
Robello, M .
APPLIED OPTICS, 2002, 41 (04) :685-690
[10]   Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution [J].
Ding, Yichen ;
Lee, Juhyun ;
Ma, Jianguo ;
Sung, Kevin ;
Yokota, Tomohiro ;
Singh, Neha ;
Dooraghi, Mojdeh ;
Abiri, Parinaz ;
Wang, Yibin ;
Kulkarni, Rajan P. ;
Nakano, Atsushi ;
Nguyen, Thao P. ;
Fei, Peng ;
Hsiai, Tzung K. .
SCIENTIFIC REPORTS, 2017, 7