Large-Scale Affine Matrix Rank Minimization With a Novel Nonconvex Regularizer

被引:25
作者
Wang, Zhi [1 ]
Liu, Yu [2 ]
Luo, Xin [3 ,4 ]
Wang, Jianjun [5 ]
Gao, Chao [1 ]
Peng, Dezhong [6 ]
Chen, Wu [1 ]
机构
[1] Southwest Univ, Coll Comp & Informat Sci, Chongqing 400715, Peoples R China
[2] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
[3] Chinese Acad Sci, Chongqing Engn Res Ctr Big Data Applicat Smart Ci, Chongqing 400714, Peoples R China
[4] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Big Data & Intelligent Comp, Chongqing 400714, Peoples R China
[5] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[6] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Minimization; Convergence; Tensors; Optimization; Analytical models; Data models; Data analysis; Inexact proximal step; low-rank minimization; matrix completion; novel nonconvex regularizer; robust principal component analysis (RPCA); tensor completion; THRESHOLDING ALGORITHM; TENSOR DECOMPOSITIONS; VARIABLE SELECTION; CONVEX RELAXATION; COMPLETION; DESCENT; FACTORIZATION; CONVERGENCE;
D O I
10.1109/TNNLS.2021.3059711
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-rank minimization aims to recover a matrix of minimum rank subject to linear system constraint. It can be found in various data analysis and machine learning areas, such as recommender systems, video denoising, and signal processing. Nuclear norm minimization is a dominating approach to handle it. However, such a method ignores the difference among singular values of target matrix. To address this issue, nonconvex low-rank regularizers have been widely used. Unfortunately, existing methods suffer from different drawbacks, such as inefficiency and inaccuracy. To alleviate such problems, this article proposes a flexible model with a novel nonconvex regularizer. Such a model not only promotes low rankness but also can be solved much faster and more accurate. With it, the original low-rank problem can be equivalently transformed into the resulting optimization problem under the rank restricted isometry property (rank-RIP) condition. Subsequently, Nesterov's rule and inexact proximal strategies are adopted to achieve a novel algorithm highly efficient in solving this problem at a convergence rate of O(1/K), with K being the iterate count. Besides, the asymptotic convergence rate is also analyzed rigorously by adopting the Kurdyka-Lojasiewicz (KL) inequality. Furthermore, we apply the proposed optimization model to typical low-rank problems, including matrix completion, robust principal component analysis (RPCA), and tensor completion. Exhaustively empirical studies regarding data analysis tasks, i.e., synthetic data analysis, image recovery, personalized recommendation, and background subtraction, indicate that the proposed model outperforms state-of-the-art models in both accuracy and efficiency.
引用
收藏
页码:4661 / 4675
页数:15
相关论文
共 62 条
[1]  
[Anonymous], 2013, PROC C ADV NEURAL IN
[2]  
[Anonymous], 2015, P NEURIPS
[3]   Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods [J].
Attouch, Hedy ;
Bolte, Jerome ;
Svaiter, Benar Fux .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :91-129
[4]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[5]   Proximal alternating linearized minimization for nonconvex and nonsmooth problems [J].
Bolte, Jerome ;
Sabach, Shoham ;
Teboulle, Marc .
MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) :459-494
[6]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[7]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[8]   The Power of Convex Relaxation: Near-Optimal Matrix Completion [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) :2053-2080
[9]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[10]   Fast image deconvolution using closed-form thresholding formulas of Lq(q=1/2, 2/3) regularization [J].
Cao, Wenfei ;
Sun, Jian ;
Xu, Zongben .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2013, 24 (01) :31-41