Graphene kirigami as reinforcement and interfacial bonding effect for toughness and strength of silicon-based nanocomposites

被引:6
作者
Wang, Yafei [1 ,2 ]
Wang, Changguo [1 ,2 ]
Zhang, Yunce [1 ,3 ]
Tan, Huifeng [1 ,2 ]
机构
[1] Harbin Inst Technol, Ctr Composite Mat, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150080, Heilongjiang, Peoples R China
[3] Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 黑龙江省自然科学基金;
关键词
Graphene kirigami; Toughness; Strength; Interfacial bonding strength; Nanocomposite; MATRIX COMPOSITES; MECHANICAL-PROPERTIES; MOLECULAR-DYNAMICS; CARBON NANOTUBE;
D O I
10.1016/j.commatsci.2018.12.034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper studies the toughness, strength and interfacial bonding effect of graphene kirigami silicon-based nanocomposite (GKSN) using molecular dynamics (MD) simulation. The GKSN model is proposed based on a hybrid potential. It is found that the toughness and maximum strength of GKSN are related to the number of interior cuts and density of kirigami patterns for graphene kirigami. Mechanical response of GKSN has four typical stages, including initial wrinkling, linear increasing, ratcheting and failure. Locking effect can significantly enhance the toughness and maximum strength of GKSN with some rare expectations. With increasing interfacial bonding strength of GKSN, toughness and maximum strength increase steadily. Finally, two novel nanocomposites based on graphene kirigami can be designed. The obtained results in this paper can provide a fundamental understanding of the maximum strength and an insight for enhancing the toughness of graphene kirigami nanocomposite. The proposed mechanisms may have general significances for the design of the next generation "super-tough" and "super-strong" nanocomposites.
引用
收藏
页码:306 / 315
页数:10
相关论文
共 39 条
[1]   A review on mechanics and mechanical properties of 2D materials-Graphene and beyond [J].
Akinwande, Deji ;
Brennan, Christopher J. ;
Bunch, J. Scott ;
Egberts, Philip ;
Felts, Jonathan R. ;
Gao, Huajian ;
Huang, Rui ;
Kim, Joon-Seok ;
Li, Teng ;
Li, Yao ;
Liechti, Kenneth M. ;
Lu, Nanshu ;
Park, Harold S. ;
Reed, Evan J. ;
Wang, Peng ;
Yakobson, Boris I. ;
Zhang, Teng ;
Zhang, Yong-Wei ;
Zhou, Yao ;
Zhu, Yong .
EXTREME MECHANICS LETTERS, 2017, 13 :42-77
[2]   Graphene kirigami as a platform for stretchable and tunable quantum dot arrays [J].
Bahamon, D. A. ;
Qi, Zenan ;
Park, Harold S. ;
Pereira, Vitor M. ;
Campbell, David K. .
PHYSICAL REVIEW B, 2016, 93 (23)
[3]   Graphene-aluminum nanocomposites [J].
Bartolucci, Stephen F. ;
Paras, Joseph ;
Rafiee, Mohammad A. ;
Rafiee, Javad ;
Lee, Sabrina ;
Kapoor, Deepak ;
Koratkar, Nikhil .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (27) :7933-7937
[4]   Graphene kirigami [J].
Blees, Melina K. ;
Barnard, Arthur W. ;
Rose, Peter A. ;
Roberts, Samantha P. ;
McGill, Kathryn L. ;
Huang, Pinshane Y. ;
Ruyack, Alexander R. ;
Kevek, Joshua W. ;
Kobrin, Bryce ;
Muller, David A. ;
McEuen, Paul L. .
NATURE, 2015, 524 (7564) :204-+
[5]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[6]   The fracture behaviors of carbon nanotube and nanoscroll reinforced silicon matrix composites [J].
Chen, Hao ;
Chen, Shaohua .
CARBON, 2014, 67 :344-351
[7]   Reinforcing mechanism of graphene at atomic level: Friction, crack surface adhesion and 2D geometry [J].
Chen, Shu Jian ;
Li, Chen Yang ;
Wang, Quan ;
Duan, Wen Hui .
CARBON, 2017, 114 :557-565
[8]   Carbon nanotubes: do they toughen brittle matrices? [J].
Cho, Johann ;
Inam, Fawad ;
Reece, Mike J. ;
Chlup, Zdenek ;
Dlouhy, Ivo ;
Shaffer, Milo S. P. ;
Boccaccini, Aldo R. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (14) :4770-4779
[9]   Ceramic matrix composites containing carbon nanotubes [J].
Cho, Johann ;
Boccaccini, Aldo R. ;
Shaffer, Milo S. P. .
JOURNAL OF MATERIALS SCIENCE, 2009, 44 (08) :1934-1951
[10]   Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J].
Erhart, P ;
Albe, K .
PHYSICAL REVIEW B, 2005, 71 (03)