Metal Fluorides Nanoconfined in Carbon Nanopores as Reversible High Capacity Cathodes for Li and Li-Ion Rechargeable Batteries: FeF2 as an Example

被引:83
作者
Gu, Wentian [1 ]
Magasinski, Alexandre [1 ]
Zdyrko, Bogdan [2 ]
Yushin, Gleb [1 ]
机构
[1] Georgia Inst Technol, Dept Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Sila Nanotechnol Inc, Atlanta, GA USA
关键词
conversion; metal halide; mesopores; energy density; lithium; VINYLENE CARBONATE; ELECTRODE MATERIALS; LITHIUM BATTERIES; ACTIVATED CARBON; POLY(DIVINYLBENZENE) MICROSPHERES; PRECIPITATION POLYMERIZATION; ELECTROCHEMICAL PERFORMANCE; GRAPHITE ANODE; FILM; NANOCOMPOSITES;
D O I
10.1002/aenm.201401148
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly uniform nanocomposites with nanoconfined iron fluoride (FeF2) are successfully produced using vacuum impregnation of activated carbon powder with a fluoride precursor and subsequent precursor transformation. When confined in carbon nanopores, metal fluoride nanoparticles exhibit dramatically enhanced performance characteristics and cycle life in Li ion batteries. Carbon pore walls accommodate fluoride volume changes during lithiation, prevent physical separation of fluoride particles, and deliver electrons or holes to the electrochemical reaction sites during cell operation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页数:7
相关论文
共 39 条
[11]   Growth mechanism of poly(divinylbenzene) microspheres in precipitation polymerization [J].
Downey, JS ;
Frank, RS ;
Li, WH ;
Stöver, HDH .
MACROMOLECULES, 1999, 32 (09) :2838-2844
[12]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[13]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[14]   Electrolyte development for improved cycling performance of bismuth fluoride nanocomposite positive electrodes [J].
Gmitter, Andrew J. ;
Gural, John ;
Amatucci, Glenn G. .
JOURNAL OF POWER SOURCES, 2012, 217 :21-28
[15]   Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites [J].
Gmitter, Andrew J. ;
Badway, Fadwa ;
Rangan, Sylvie ;
Bartynski, Robert A. ;
Halajko, Anna ;
Pereira, Nathalie ;
Amatucci, Glenn G. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (20) :4149-4161
[16]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[17]   Preparation and performance of polyvinyl alcohol-based activated carbon as electrode material in both aqueous and organic electrolytes [J].
Guo, Shuangling ;
Wang, Fang ;
Chen, Hao ;
Ren, He ;
Wang, Rongshun ;
Pan, Xiumei .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (10) :3355-3362
[18]   Fabrication of FeF3 Nanoflowers on CNT Branches and Their Application to High Power Lithium Rechargeable Batteries [J].
Kim, Sung-Wook ;
Seo, Dong-Hwa ;
Gwon, Hyeokjo ;
Kim, Jongsoon ;
Kang, Kisuk .
ADVANCED MATERIALS, 2010, 22 (46) :5260-5264
[19]   Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries [J].
Komaba, S ;
Kumagai, N ;
Kataoka, Y .
ELECTROCHIMICA ACTA, 2002, 47 (08) :1229-1239
[20]   An In Situ Ionic-Liquid-Assisted Synthetic Approach to Iron Fluoride/Graphene Hybrid Nanostructures as Superior Cathode Materials for Lithium Ion Batteries [J].
Li, Bingjiang ;
Rooney, David W. ;
Zhang, Naiqing ;
Sun, Kening .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (11) :5057-5063