Report Highly efficient and highly selective CO2 reduction to CO driven by laser

被引:25
作者
Yan, Bo [1 ,2 ]
Li, Yinwu [1 ,2 ]
Cao, Weiwei [1 ,2 ]
Zeng, Zhiping [1 ,2 ]
Liu, Pu [1 ,2 ]
Ke, Zhuofeng [1 ,2 ]
Yang, Guowei [1 ,2 ]
机构
[1] Sun Yat sen Univ, Nanotechnol Res Ctr, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
[2] Sun Yat sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; ABLATION; FUNDAMENTALS; NANOSECOND; LIQUID;
D O I
10.1016/j.joule.2022.11.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon dioxide (CO2) reduction is a possible way to solve the green-house effect. Conventional catalytic CO2 reduction faces some problems, such as high free energy barriers, limitation of cheap and effective catalysts. Here, we develop a highly efficient and high-ly selective CO2 reduction under mild conditions by laser reduction in liquid (LRL). A high CO yield of 12.3 mmol h-1 with near 100% selectivity and 13.3% energy conversion efficiency of laser to CO is achieved. In LRL, abundant active species are created immediately by laser-induced plasma in small bubbles along with transient extremely high temperature. Thermodynamically, CO2 reduction proceeds quickly with the interaction of active species at high tem-perature. Kinetically, the rapid quenching process inhibits reverse reaction and keeps products at initial stage. The synergy of thermo-dynamics and kinetics results in high yield and high selectivity. These findings provide an alternative approach for CO2 reduction under ambient conditions.
引用
收藏
页码:2735 / 2744
页数:11
相关论文
共 39 条
[1]   The trouble with negative emissions [J].
Anderson, Kevin ;
Peters, Glen .
SCIENCE, 2016, 354 (6309) :182-183
[2]   Materials synthesis in a bubble [J].
Barcikowski, Stephan ;
Plech, Anton ;
Suslick, Kenneth S. ;
Vogel, Alfred .
MRS BULLETIN, 2019, 44 (05) :382-391
[3]   Greenhouse-inspired supra-photothermal CO2 catalysis [J].
Cai, Mujin ;
Wu, Zhiyi ;
Li, Zhao ;
Wang, Lu ;
Sun, Wei ;
Tountas, Athanasios A. ;
Li, Chaoran ;
Wang, Shenghua ;
Feng, Kai ;
Xu, Ao-Bo ;
Tang, Sanli ;
Tavasoli, Alexandra ;
Peng, Meiwen ;
Liu, Wenxuan ;
Helmy, Amr S. ;
He, Le ;
Ozin, Geoffrey A. ;
Zhang, Xiaohong .
NATURE ENERGY, 2021, 6 (08) :807-814
[4]   Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity [J].
Dang, Shanshan ;
Qin, Bin ;
Yang, Yong ;
Wang, Hui ;
Cai, Jun ;
Han, Yong ;
Li, Shenggang ;
Gao, Peng ;
Sun, Yuhan .
SCIENCE ADVANCES, 2020, 6 (25)
[5]   Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2 [J].
Das, Sonali ;
Perez-Ramirez, Javier ;
Gong, Jinlong ;
Dewangan, Nikita ;
Hidajat, Kus ;
Gates, Bruce C. ;
Kawi, Sibudjing .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (10) :2937-3004
[6]   The dissociation of carbon dioxide at high temperatures [J].
David, WT .
NATURE, 1927, 120 :157-157
[7]   Generation of nanomaterials by reactive laser-synthesis in liquid [J].
Frias Batista, Laysa M. ;
Nag, Ashish ;
Meader, Victoria K. ;
Tibbetts, Katharine Moore .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (07)
[8]   Product selectivity of photocatalytic CO2 reduction reactions [J].
Fu, Junwei ;
Jiang, Kexin ;
Qiu, Xiaoqing ;
Yu, Jiaguo ;
Liu, Min .
MATERIALS TODAY, 2020, 32 :222-243
[9]   Diode-wing-pumped electro-optically Q-switched 2 μm laser with pulse energy scaling over ten millijoules [J].
Guo, L. ;
Zhao, S. Z. ;
Li, T. ;
Yang, K. J. ;
Qiao, W. C. ;
Li, D. C. ;
Li, Q. ;
Zhang, S. Y. ;
Bian, J. T. ;
Zheng, L. H. ;
Su, L. B. ;
Xu, J. .
OPTICS EXPRESS, 2018, 26 (13) :17731-17738
[10]   Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques [J].
Handoko, Albertus D. ;
Wei, Fengxia ;
Jenndy ;
Yeo, Boon Siang ;
Seh, Zhi Wei .
NATURE CATALYSIS, 2018, 1 (12) :922-934