Deep Learning Models for Magnetic Cardiography Edge Sensors Implementing Noise Processing and Diagnostics

被引:10
作者
Sakib, Sadman [1 ,2 ]
Fouda, Mostafa M. [3 ,4 ]
Al-Mahdawi, Muftah [5 ,6 ]
Mohsen, Attayeb [7 ]
Oogane, Mikihiko [5 ,6 ,8 ]
Ando, Yasuo [5 ,6 ,8 ]
Fadlullah, Zubair Md [1 ,2 ]
机构
[1] Lakehead Univ, Dept Comp Sci, Thunder Bay, ON P7B 5E1, Canada
[2] Thunder Bay Reg Hlth Res Inst TBRHRI, Thunder Bay, ON P7B 7A5, Canada
[3] Idaho State Univ, Coll Sci & Engn, Dept Elect & Comp Engn, Pocatello, ID 83209 USA
[4] Benha Univ, Fac Engn Shoubra, Dept Elect Engn, Cairo 11672, Egypt
[5] Tohoku Univ, Ctr Sci & Innovat Spintron, Core Res Cluster, Sendai, Miyagi 9808577, Japan
[6] Tohoku Univ, Ctr Spintron Res Network, Sendai, Miyagi 9808577, Japan
[7] Natl Inst Biomed Innovat Hlth & Nutr NIBIOHN, Artificial Intelligence Ctr Hlth & Biomed Res ArC, Osaka 5670085, Japan
[8] Tohoku Univ, Dept Appl Phys, Sendai, Miyagi, Japan
关键词
Electrocardiography; Monitoring; Sensors; Magnetic sensors; Magnetic tunneling; Training; Convolution; Remote health monitoring; arrhythmia; Internet of Things (IoT); electrocardiogram (ECG); magnetocardiography (MCG); deep learning (DL); spintronic sensor; convolutional neural network (CNN); medical analytics; ARRHYTHMIA DETECTION;
D O I
10.1109/ACCESS.2021.3138976
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Remote health monitoring has become a necessity due to reduced healthcare access resulting from pandemic lockdowns and the increasing aging population. Electrocardiography (ECG) is the standard for cardiac monitoring and arrhythmia identification, but it is inconvenient for long-time remote monitoring. Recently, Magnetocardiography (MCG) sensors that operate at room temperature became available based on spintronic sensors. However, MCG analysis is affected by the low-frequency noise present at the sensors. In this paper, we present an artificial intelligence (AI)-aided multi-model pipeline combining two AI architectures, defined as model-M1 and model-M2, targeted for ultra-edge Internet of Things (IoT) sensors to simulate arrhythmia detection. Model-M1 is a denoising preprocessor based on a sliding-window assisted deep-learning (DL) model. We investigate various methods to achieve high accuracy with lightweight computation. Model-M2 is a lightweight DL model that analyzes denoised ECG output from model-M1 to identify arrhythmia. We use multiple publicly available clinically annotated datasets to evaluate our proposal. We find that denoising by model-M1 retains the features, which assist the model-M2 in achieving high classification accuracy, compared to using a conventional moving average filter. This AI pipeline architecture is promising for privacy-preserving ultra-edge medical sensing devices.
引用
收藏
页码:2656 / 2668
页数:13
相关论文
共 52 条
[1]   Image classification on IoT edge devices: profiling and modeling [J].
Abdel Magid, Salma ;
Petrini, Francesco ;
Dezfouli, Behnam .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2020, 23 (02) :1025-1043
[2]  
Agarap A. F., 2018, CoRR
[3]  
Bansal Malti, 2019, 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), P390, DOI 10.1109/COMITCon.2019.8862197
[4]   Defining the pattern of initiation of monomorphic ventricular tachycardia using the beat-to-beat intervals recorded on implantable cardioverter defibrillators from the RAFT study: A computer-based algorithm [J].
Barbosa, Rodrigo S. ;
Glass, Leon ;
Proietti, Riccardo ;
Burstein, Barry ;
Al-Turki, Ahmed ;
Sobolik, Lyndon ;
Zhang, Zhubo ;
Viart, Guillaume ;
Samuel, Michelle ;
Shrier, Alvin ;
Essebag, Vidal .
JOURNAL OF ELECTROCARDIOLOGY, 2018, 51 (03) :470-474
[5]  
Bousseljot R., 1995, Biomedizinische Technik/Biomedical Engineering, V40, P317, DOI [10.1515/bmte.1995.40.s1.317, DOI 10.1515/BMTE.1995.40.S1.317]
[6]   Constrained transformer network for ECG signal processing and arrhythmia classification [J].
Che, Chao ;
Zhang, Peiliang ;
Zhu, Min ;
Qu, Yue ;
Jin, Bo .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
[7]   Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model [J].
Chen, Tsai-Min ;
Huang, Chih-Han ;
Shih, Edward S. C. ;
Hu, Yu-Feng ;
Hwang, Ming-Jing .
ISCIENCE, 2020, 23 (03)
[8]  
Czeisler MÉ, 2020, MMWR-MORBID MORTAL W, V69, P1250, DOI 10.15585/mmwr.mm6936a4
[9]   Critical challenges for picoTesla magnetic-tunnel-junction sensors [J].
Egelhoff, W. F., Jr. ;
Pong, P. W. T. ;
Unguris, J. ;
McMichael, R. D. ;
Nowak, E. R. ;
Edelstein, A. S. ;
Burnette, J. E. ;
Fischer, G. A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2009, 155 (02) :217-225
[10]   ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform [J].
El B'charri, Oussama ;
Latif, Rachid ;
Elmansouri, Khalifa ;
Abenaou, Abdenbi ;
Jenkal, Wissam .
BIOMEDICAL ENGINEERING ONLINE, 2017, 16