Droplet-based methods for tackling antimicrobial resistance

被引:12
作者
Ruszczak, Artur [1 ]
Bartkova, Simona [2 ]
Zapotoczna, Marta [3 ]
Scheler, Ott [2 ]
Garstecki, Piotr [1 ]
机构
[1] Polish Acad Sci, Inst Phys Chem, Kasprzaka 44-52, PL-01224 Warsaw, Poland
[2] Tallinn Univ Technol TalTech, Dept Chem & Biotechnol, Akad Tee 15, EE-12618 Tallinn, Estonia
[3] Univ Warsaw, Fac Biol, Biol & Chem Res Ctr, Dept Mol Microbiol,Inst Microbiol, Zwirki & Wigury 101, PL-101 Warsaw, Poland
关键词
ANTIBIOTIC-RESISTANCE; SUSCEPTIBILITY; IMAGE;
D O I
10.1016/j.copbio.2022.102755
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Application of droplet-based methods enables (i) faster detection, (ii) increased sensitivity, (iii) characterization of the level of heterogeneity in response to antibiotics by bacterial populations, and (iv) expanded screening of the effectiveness of antibiotic combinations. Hereby, we discuss the key steps and parameters of droplet-based experiments to investigate antimicrobial resistance. We also review recent findings accomplished with these methods and highlight their advantages and capacity to yield new insights into the problem of antimicrobial resistance.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Rapid bacterial detection and antibiotic susceptibility testing in whole blood using one-step, high throughput blood digital PCR [J].
Abram, Timothy J. ;
Cherukury, Hemanth ;
Ou, Chen-Yin ;
Tam Vu ;
Toledano, Michael ;
Li, Yiyan ;
Grunwald, Jonathan T. ;
Toosky, Melody N. ;
Tifrea, Delia F. ;
Slepenkin, Anatoly ;
Chong, Jonathan ;
Kong, Lingshun ;
Del Pozo, Domenica Vanessa ;
Kieu Thai La ;
Labanieh, Louai ;
Zimak, Jan ;
Shen, Byron ;
Huang, Susan S. ;
Gratton, Enrico ;
Peterson, Ellena M. ;
Zhao, Weian .
LAB ON A CHIP, 2020, 20 (03) :477-489
[2]   Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells [J].
Alexander, Helen K. ;
MacLean, R. Craig .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (32) :19455-19464
[3]   Isolated cell behavior drives the evolution of antibiotic resistance [J].
Artemova, Tatiana ;
Gerardin, Ylaine ;
Dudley, Carmel ;
Vega, Nicole M. ;
Gore, Jeff .
MOLECULAR SYSTEMS BIOLOGY, 2015, 11 (07)
[4]   Antibiotic Resistance: One Health One World Outlook [J].
Aslam, Bilal ;
Khurshid, Mohsin ;
Arshad, Muhammad Imran ;
Muzammil, Saima ;
Rasool, Maria ;
Yasmeen, Nafeesa ;
Shah, Taif ;
Chaudhry, Tamoor Hamid ;
Rasool, Muhammad Hidayat ;
Shahid, Aqsa ;
Xia, Xueshan ;
Baloch, Zulqarnain .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2021, 11
[5]  
Band VI, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.53, 10.1038/nmicrobiol.2016.53]
[6]   Droplet image analysis with user-friendly freeware CellProfiler [J].
Bartkova, Simona ;
Vendelin, Marko ;
Sanka, Immanuel ;
Pata, Pille ;
Scheler, Ott .
ANALYTICAL METHODS, 2020, 12 (17) :2287-2294
[7]   Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics [J].
Boedicker, James Q. ;
Li, Liang ;
Kline, Timothy R. ;
Ismagilov, Rustem F. .
LAB ON A CHIP, 2008, 8 (08) :1265-1272
[8]   Polydisperse emulsion digital assay to enhance time to detection and extend dynamic range in bacterial cultures enabled by a statistical framework [J].
Byrnes, Samantha A. ;
Phillips, Elizabeth A. ;
Toan Huynh ;
Weigl, Bernhard H. ;
Nichols, Kevin P. .
ANALYST, 2018, 143 (12) :2828-2836
[9]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[10]   Efficiency and sensitivity of the digital droplet PCR for the quantification of antibiotic resistance genes in soils and organic residues [J].
Cave, Laura ;
Brothier, Elisabeth ;
Abrouk, Danis ;
Bouda, Panignimyande Salomon ;
Hien, Edmond ;
Nazaret, Sylvie .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 100 (24) :10597-10608