Analysis of Existence and Stability Results for Impulsive Fractional Integro-Differential Equations Involving the Atangana-Baleanu-Caputo Derivative under Integral Boundary Conditions

被引:7
|
作者
Reunsumrit, Jiraporn [1 ]
Karthikeyann, Panjaiyan [2 ]
Poornima, Sadhasivam [2 ]
Karthikeyan, Kulandhaivel [3 ,4 ]
Sitthiwirattham, Thanin [5 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[2] Sri Vasavi Coll, Dept Math, Erode 638136, India
[3] KPR Inst Engn & Technol, Dept Math, Coimbatore 641407, Tamil Nadu, India
[4] KPR Inst Engn & Technol, Ctr Res & Dev, Coimbatore 641407, Tamil Nadu, India
[5] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
关键词
MITTAG-LEFFLER STABILITY; DIFFERENTIAL-EQUATIONS; ORDER;
D O I
10.1155/2022/5449680
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we consider the existence results of solutions of impulsive Atangana-Baleanu-Caputo (ABC) fractional integrodi3erential equations with integral boundary conditions. Krasnoselskii's 6xed-point theorem and the Banach contraction principle are used to prove the existence and uniqueness of results. Moreover, we also establish Hyers-Ulam stability for this problem. An example is also presented at the end.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Investigation on integro-differential equations with fractional boundary conditions by Atangana-Baleanu-Caputo derivative
    Harisa, Samy A.
    Faried, Nashat
    Vijayaraj, V.
    Ravichandran, C.
    Morsy, Ahmed
    PLOS ONE, 2024, 19 (05):
  • [2] Results on Impulsive Fractional Integro-Differential Equations Involving Atangana-Baleanu Derivative
    Karthikeyan, Kulandhivel
    Ege, Ozgur
    Karthikeyan, Panjayan
    FILOMAT, 2022, 36 (13) : 4617 - 4627
  • [3] Analysis of nonlinear fractional differential equations involving Atangana-Baleanu-Caputo derivative
    Kucche, Kishor D.
    Sutar, Sagar T.
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [4] On Implicit Atangana-Baleanu-Caputo Fractional Integro-Differential Equations with Delay and Impulses
    Karthikeyann, Panjaiyan
    Poornima, Sadhasivam
    Karthikeyan, Kulandhaivel
    Promsakon, Chanon
    Sitthiwirattham, Thanin
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [5] Existence and Stability for a Coupled Hybrid System of Fractional Differential Equations with Atangana-Baleanu-Caputo Derivative
    Zhao, Liyuan
    Jiang, Yirong
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [6] On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space
    Al-Smadi, Mohammed
    Dutta, Hemen
    Hasan, Shatha
    Momani, Shaher
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2021, 16 (16)
  • [7] On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative
    Abdo, Mohammed S.
    Abdeljawad, Thabet
    Kucche, Kishor D.
    Alqudah, Manar A.
    Ali, Saeed M.
    Jeelani, Mdi Begum
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [8] On Nonlinear Hybrid Fractional Differential Equations with Atangana-Baleanu-Caputo Derivative
    Sutar, Sagar T.
    Kucche, Kishor D.
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [9] New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations
    Ravichandran, C.
    Logeswari, K.
    Jarad, Fahd
    CHAOS SOLITONS & FRACTALS, 2019, 125 : 194 - 200
  • [10] Atangana-Baleanu-Caputo differential equations with mixed delay terms and integral boundary conditions
    Filali, D.
    Ali, Arshad
    Ali, Zeeshan
    Akram, M.
    Dilshad, M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 10435 - 10449