Joint generative and camera-aware clustering for unsupervised domain adaptation on person re-identification

被引:2
作者
Liu, Guiqing [1 ,2 ,3 ]
Wu, Jinzhao [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Comp Applicat, Chengdu, Sichuan, Peoples R China
[2] Guangxi Univ Nationalities, Coll ASEAN Studies, Nanning, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Guangxi Univ, Coll Math & Informat Sci, Nanning, Peoples R China
基金
中国国家自然科学基金;
关键词
joint generative and camera-aware clustering; unsupervised domain adaptation; person re-identification; generative adversarial network;
D O I
10.1117/1.JEI.31.2.023027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing supervised person re-identification (Re-ID) methods demonstrate excellent performance. However, their performances suffer degradation when tested on an unseen different distributed domain. Generative adversarial network-based (GAN-based) and clustering- or pseudolabel-based methods are proposed to alleviate this problem. Due to the transfer scheme and the ignorance of correlations between the style-transferred and the original target images, the performance of GAN-based methods is unsatisfactory. We resolve these problems by jointly employing a generative strategy and performing camera-aware clustering for the target domain. Style-transferred images are generated from source cameras to target cameras, and then they are merged into the target domain selectively after exploiting their domain-specific discriminative information. To reduce the noise in generated images, we propose a domain-level boundary separation loss to group the transferred images and push them away from the original target images. The camera-level neighborhood-based clustering is proposed to learn well-clustered features in a camera-aware manner. Extensive experiments on two commonly used person Re-ID datasets demonstrate that our proposed method can achieve state-of-the-art performance. (C) 2022 SPIE and IS&T
引用
收藏
页数:15
相关论文
共 45 条
[1]  
[Anonymous], 2017, In defense of the triplet loss for person re-identification
[2]   Hierarchical Connectivity-Centered Clustering for Unsupervised Domain Adaptation on Person Re-Identification [J].
Bai, Yan ;
Wang, Ce ;
Lou, Yihang ;
Liu, Jun ;
Duan, Ling-Yu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :6715-6729
[3]   Unsupervised Multi-Source Domain Adaptation for Person Re-Identification [J].
Bai, Zechen ;
Wang, Zhigang ;
Wang, Jian ;
Hu, Di ;
Ding, Errui .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12909-12918
[4]   Joint Generative and Contrastive Learning for Unsupervised Person Re-identification [J].
Chen, Hao ;
Wang, Yaohui ;
Lagadec, Benoit ;
Dantcheva, Antitza ;
Bremond, Francois .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2004-2013
[5]   Person Re-Identification by Camera Correlation Aware Feature Augmentation [J].
Chen, Ying-Cong ;
Zhu, Xiatian ;
Zheng, Wei-Shi ;
Lai, Jian-Huang .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (02) :392-408
[6]   Generalizable Person Re-identification with Relevance-aware Mixture of Experts [J].
Dai, Yongxing ;
Li, Xiaotong ;
Liu, Jun ;
Tong, Zekun ;
Duan, Ling-Yu .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :16140-16149
[7]   Graph Matching and Pseudo-Label Guided Deep Unsupervised Domain Adaptation [J].
Das, Debasmit ;
Lee, C. S. George .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 :342-352
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]   Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification [J].
Deng, Weijian ;
Zheng, Liang ;
Ye, Qixiang ;
Kang, Guoliang ;
Yang, Yi ;
Jiao, Jianbin .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :994-1003
[10]   Unsupervised Person Re-identification: Clustering and Fine-tuning [J].
Fan, Hehe ;
Zheng, Liang ;
Yan, Chenggang ;
Yang, Yi .
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2018, 14 (04)