Global classical solutions to the 2D compressible MHD equations with large data and vacuum (vol 258, pg 3304, 2015)

被引:6
作者
Mei, Yu [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Inst Math Sci, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
Compressible MHD equations; Density-dependent viscosity; Global classical solutions; Large data; Vacuum;
D O I
10.1016/j.jde.2015.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the global well-posedness of classical solutions to the 2D compressible MHD equations with large initial data and vacuum. With the assumption mu = const. and lambda = rho(beta), beta > 1 (Vaigant-Kazhikhov Model) for the viscosity coefficients, the global existence and uniqueness of classical solutions to the initial value problem is established on the torus T-2 and the whole space R-2 (with vacuum or non-vacuum far fields). These results generalize the previous ones for the Vaigant Kazhikhov model of compressible Navier-Stokes equations. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:3360 / 3362
页数:3
相关论文
共 4 条
[1]  
Huang J., ARXIV14075349V1
[2]  
Huang X.D., ARXIV12055342V2
[3]  
Huang X. -D., ARXIV12073746V1
[4]  
Mei Y, 2015, J DIFFER EQUATIONS, V258, P3304, DOI 10.1016/j.jde.2014.11.023