MMSRC: A Multidirection Multiscale Spectral-Spatial Residual Network for Hyperspectral Multiclass Change Detection

被引:11
作者
Ge, Hongmei [1 ,2 ]
Tang, Yongsheng [3 ]
Bi, Zuolin [3 ]
Zhan, Tianming [4 ]
Xu, Yang [5 ]
Song, Aibo [6 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Peoples R China
[2] Nanjing Audit Univ, Sch Engn Audit, Nanjing 211815, Peoples R China
[3] Nanjing Audit Univ, Sch Informat Engn, Nanjing 211815, Peoples R China
[4] Nanjing Audit Univ, Jiangsu Key Construct Lab Audit Informat Engn, Nanjing 211815, Peoples R China
[5] Nanjing Univ Sci & Technol, Nanjing 210094, Peoples R China
[6] Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Feature extraction; Convolution; Tensors; Detection algorithms; Deep learning; Residual neural networks; Convolutional neural network (CNN); hyperspectral change detection; multidirection; multiscale; IMAGE CLASSIFICATION; FUSION;
D O I
10.1109/JSTARS.2022.3216624
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, deep convolutional neural network (CNN) hyperspectral change detection methods have achieved significant improvement. However, most CNN hyperspectral change detection methods do not make full use of spectral-spatial feature information. In this article, we propose a novel multidirection and multiscale spectral-spatial residual network for hyperspectral multiclass change detection. Specifically, a multiscale structure and a multidirection mechanism are introduced to investigate feature variation of hyperspectral images and improve the accuracy of hyperspectral change detection. Experiments on multiple hyperspectral datasets show that the proposed method achieves improved performance in comparison with other advanced hyperspectral multiclass change detection methods.
引用
收藏
页码:9254 / 9265
页数:12
相关论文
共 45 条
[31]   Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges [J].
Shi, Wenzhong ;
Zhang, Min ;
Zhang, Rui ;
Chen, Shanxiong ;
Zhan, Zhao .
REMOTE SENSING, 2020, 12 (10)
[32]   Change Detection in Hyperspectral Images Using Recurrent 3D Fully Convolutional Networks [J].
Song, Ahram ;
Choi, Jaewan ;
Han, Youkyung ;
Kim, Yongil .
REMOTE SENSING, 2018, 10 (11)
[33]  
Szegedy C, 2015, PROC CVPR IEEE, P1, DOI 10.1109/CVPR.2015.7298594
[34]  
Taskesen B, 2018, WORK HYPERSP IMAG
[35]   LCS-EnsemNet: A Semisupervised Deep Neural Network for SAR Image Change Detection With Dual Feature Extraction and Label-Consistent Self-Ensemble [J].
Wang, Jian ;
Wang, Yinghua ;
Chen, Bo ;
Liu, Hongwei .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :11903-11925
[36]  
Wang L., 2022, IEEE T GEOSCI REMOTE, V60
[37]   GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection [J].
Wang, Qi ;
Yuan, Zhenghang ;
Du, Qian ;
Li, Xuelong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (01) :3-13
[38]   Multiple Spectral Resolution 3D Convolutional Neural Network for Hyperspectral Image Classification [J].
Xu, Hao ;
Yao, Wei ;
Cheng, Li ;
Li, Bo .
REMOTE SENSING, 2021, 13 (07)
[39]   Hyperspectral Image Classification With Deep Learning Models [J].
Yang, Xiaofei ;
Ye, Yunming ;
Li, Xutao ;
Lau, Raymond Y. K. ;
Zhang, Xiaofeng ;
Huang, Xiaohui .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09) :5408-5423
[40]   Multiscale Superpixel-Level Subspace-Based Support Vector Machines for Hyperspectral Image Classification [J].
Yu, Haoyang ;
Gao, Lianru ;
Liao, Wenzhi ;
Zhang, Bing ;
Pizurica, Aleksandra ;
Philips, Wilfried .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (11) :2142-2146