MMSRC: A Multidirection Multiscale Spectral-Spatial Residual Network for Hyperspectral Multiclass Change Detection

被引:11
作者
Ge, Hongmei [1 ,2 ]
Tang, Yongsheng [3 ]
Bi, Zuolin [3 ]
Zhan, Tianming [4 ]
Xu, Yang [5 ]
Song, Aibo [6 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Peoples R China
[2] Nanjing Audit Univ, Sch Engn Audit, Nanjing 211815, Peoples R China
[3] Nanjing Audit Univ, Sch Informat Engn, Nanjing 211815, Peoples R China
[4] Nanjing Audit Univ, Jiangsu Key Construct Lab Audit Informat Engn, Nanjing 211815, Peoples R China
[5] Nanjing Univ Sci & Technol, Nanjing 210094, Peoples R China
[6] Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Feature extraction; Convolution; Tensors; Detection algorithms; Deep learning; Residual neural networks; Convolutional neural network (CNN); hyperspectral change detection; multidirection; multiscale; IMAGE CLASSIFICATION; FUSION;
D O I
10.1109/JSTARS.2022.3216624
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, deep convolutional neural network (CNN) hyperspectral change detection methods have achieved significant improvement. However, most CNN hyperspectral change detection methods do not make full use of spectral-spatial feature information. In this article, we propose a novel multidirection and multiscale spectral-spatial residual network for hyperspectral multiclass change detection. Specifically, a multiscale structure and a multidirection mechanism are introduced to investigate feature variation of hyperspectral images and improve the accuracy of hyperspectral change detection. Experiments on multiple hyperspectral datasets show that the proposed method achieves improved performance in comparison with other advanced hyperspectral multiclass change detection methods.
引用
收藏
页码:9254 / 9265
页数:12
相关论文
共 45 条
[1]   Deep Learning for Classification of Hyperspectral Data [J].
Audebert, Nicolas ;
Le Saux, Bertrand ;
Lefevre, Sebastien .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2019, 7 (02) :159-173
[2]  
Ball JE, 2018, INT GEOSCI REMOTE SE, P6903, DOI 10.1109/IGARSS.2018.8519368
[3]   Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution [J].
Chen, Yunpeng ;
Fan, Haoqi ;
Xu, Bing ;
Yan, Zhicheng ;
Kalantidis, Yannis ;
Rohrbach, Marcus ;
Yan, Shuicheng ;
Feng, Jiashi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3434-3443
[4]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[5]   Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images [J].
Du, Bo ;
Ru, Lixiang ;
Wu, Chen ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (12) :9976-9992
[6]   Sparse Unmixing-Based Change Detection for Multitemporal Hyperspectral Images [J].
Erturk, Alp ;
Iordache, Marian-Daniel ;
Plaza, Antonio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (02) :708-719
[7]   Saliency-Guided Deep Neural Networks for SAR Image Change Detection [J].
Geng, Jie ;
Ma, Xiaorui ;
Zhou, Xiaojun ;
Wang, Hongyu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10) :7365-7377
[8]   Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks [J].
Gong, Maoguo ;
Zhao, Jiaojiao ;
Liu, Jia ;
Miao, Qiguang ;
Jiao, Licheng .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (01) :125-138
[9]   A CNN With Multiscale Convolution and Diversified Metric for Hyperspectral Image Classification [J].
Gong, Zhiqiang ;
Zhong, Ping ;
Yu, Yang ;
Hu, Weidong ;
Li, Shutao .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06) :3599-3618
[10]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034