Structure/Interface Coupling Effect for High-Voltage LiCoO2 Cathodes

被引:58
|
作者
Chen, Jun [1 ]
Chen, Hongyi [1 ]
Zhang, Shu [1 ]
Dai, Alvin [2 ]
Li, Tianyi [3 ]
Mei, Yu [1 ]
Ni, Lianshan [1 ]
Gao, Xu [1 ]
Deng, Wentao [1 ]
Yu, Lei [4 ]
Zou, Guoqiang [1 ]
Hou, Hongshuai [1 ]
Dahbi, Mouad [5 ]
Xu, Wenqian [3 ]
Wen, Jianguo [4 ]
Alami, Jones [5 ]
Liu, Tongchao [2 ]
Amine, Khalil [2 ,5 ,6 ]
Ji, Xiaobo [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[2] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[3] Argonne Natl Lab, Adv Photon Sources, Xray Sci Div, Lemont, IL 60439 USA
[4] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[5] Mohammed VI Polytech Univ UM6P, Mat Sci Energy & Nanoengn Dept, Benguerir 43150, Morocco
[6] Stanford Univ, Mat Sci & Engn, Stanford, CA 94305 USA
基金
中国国家自然科学基金;
关键词
electrochemical performance; high-voltage LiCoO; (2); stability of structure; interface; structure; interface coupling effect;
D O I
10.1002/adma.202204845
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
LiCoO2 (LCO) is widely applied in today's rechargeable battery markets for consumer electronic devices. However, LCO operations at high voltage are hindered by accelerated structure degradation and electrode/electrolyte interface decomposition. To overcome these challenges, co-modified LCO (defined as CB-Mg-LCO) that couples pillar structures with interface shielding are successfully synthesized for achieving high-energy-density and structurally stable cathode material. Benefitting from the "Mg-pillar" effect, irreversible phase transitions are significantly suppressed and highly reversible Li+ shuttling is enabled. Interestingly, bonding effects between the interfacial lattice oxygen of CB-Mg-LCO and amorphous CoxBy coating layer are found to elevate the formation energy of oxygen vacancies, thereby considerably mitigating lattice oxygen loss and inhibiting irreversible phase transformation. Meanwhile, interface shielding effects are also beneficial for mitigating parasitic electrode/electrolyte reactions, subsequent Co dissolution, and ultimately enable a robust electrode/electrolyte interface. As a result, the as-designed CB-Mg-LCO cathode achieves a high capacity and excellent cycle stability with 94.6% capacity retention at an extremely high cut-off voltage of 4.6 V. These findings provide new insights for cathode material modification methods, which serves to guide future cathode material design.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Synergetic Effect of Electrolyte Coadditives for a High-Voltage LiCoO2 Cathode
    Wen, Xinyang
    Chen, Min
    Zhou, Xianggui
    Chen, Shuai
    Huang, Haonan
    Chen, Jiakun
    Ruan, Digen
    Xiang, Wenjin
    Zhang, Gaige
    Li, Weishan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (01) : 282 - 295
  • [2] In Situ-Constructed Multifunctional Interface for High-Voltage 4.6 V LiCoO2
    Sun, Chao
    Zhao, Bing
    Cui, Ru-de
    Mao, Jing
    Dai, Ke-Hua
    Chen, He-Zhang
    Zhang, Xia-hui
    Zheng, Jun-chao
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (18) : 21982 - 21993
  • [3] Achieving structural stability of LiCoO2 at high-voltage by gadolinium decoration
    Hao, Shuaipeng
    Li, Yunjiao
    Wang, Shan
    Yang, Jiachao
    Tan, Zhouliang
    Li, Xiaohui
    Shen, Xinjie
    Xi, Xiaoming
    Zheng, Junchao
    He, Zhenjiang
    MATERIALS TODAY ENERGY, 2022, 25
  • [4] Research progress of functional electrolyte for high-voltage LiCoO2 battery
    Peng, Dan
    Lu, Junjie
    Ni, Wenjing
    Yang, Yuan
    Wang, Jinglun
    Huagong Xuebao/CIESC Journal, 2024, 75 (09): : 3028 - 3040
  • [5] Enhanced high-voltage electrochemical performance of LiCoO2 coated with ZrOxFy
    Wang, Zhiguo
    Wang, Zhixing
    Guo, Huajun
    Peng, Wenjie
    Li, Xinhai
    Wang, Jiexi
    MATERIALS LETTERS, 2014, 123 : 93 - 96
  • [6] In situ constructing a stable interface film on high-voltage LiCoO2 cathode via a novel electrolyte additive
    Ruan, Digen
    Chen, Min
    Wen, Xinyang
    Li, Shuqing
    Zhou, Xianggui
    Che, Yanxia
    Chen, Jiakun
    Xiang, Wenjin
    Li, Suli
    Wang, Hai
    Liu, Xiang
    Li, Weishan
    NANO ENERGY, 2021, 90
  • [7] Dextran Sulfate Lithium as Versatile Binder to Stabilize High-Voltage LiCoO2 to 4.6 V
    Huang, He
    Li, Zhiqiang
    Gu, Shuai
    Bian, Juncao
    Li, Yingzhi
    Chen, Jingjing
    Liao, Kemeng
    Gan, Qingmeng
    Wang, Yanfang
    Wu, Sisi
    Wang, Zhenyu
    Luo, Wen
    Hao, Rui
    Wang, Zhiqiang
    Wang, Guoyu
    Lu, Zhouguang
    ADVANCED ENERGY MATERIALS, 2021, 11 (44)
  • [8] Conformal Coating of a High-Voltage Spinel to Stabilize LiCoO2 at 4.6 V
    Zan, Mingwei
    Weng, Suting
    Yang, Haoyi
    Wang, Junyang
    Yang, Lufeng
    Jiao, Sichen
    Chen, Penghao
    Wang, Xuefeng
    Zhang, Jie-Nan
    Yu, Xiqian
    Li, Hong
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (04) : 5326 - 5335
  • [9] High-entropy doping for high-voltage LiCoO2 with enhanced electrochemical performances
    Zeng, Sihan
    Zhu, Yiran
    Si, Juntao
    Liu, Huaibing
    Wang, Yida
    Hu, Yunyong
    Chen, Chunhua
    JOURNAL OF POWER SOURCES, 2025, 626
  • [10] Research Progress of High-Voltage LiCoO2 Cathode for Lithium-ion Batteries
    Lin Chun
    Chen Yue
    Lin Hongbin
    Li Zhixuan
    Pan Handian
    Huang Zhigao
    RARE METAL MATERIALS AND ENGINEERING, 2021, 50 (04) : 1492 - 1504