A computational method for the inverse transmission eigenvalue problem

被引:26
作者
Gintides, Drossos [1 ]
Pallikarakis, Nikolaos [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
SPHERICALLY SYMMETRICAL SPEED; EXISTENCE; REFRACTION; INDEX;
D O I
10.1088/0266-5611/29/10/104010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider the inverse transmission eigenvalue problem to determine the refractive index from transmission eigenvalues. We adopt a weak formulation of the problem and provide a Galerkin scheme in H-0(2) (D) to compute transmission eigenvalues. Using a proper operator representation of the problem, we show convergence of the method. Next, we define the inverse transmission problem and show that numerically the problem can be considered as a discrete inverse quadratic eigenvalue problem. First, we investigate the case of a spherically symmetric piecewise constant refractive index and confirm our results with analytic computations. Then, we show that a relative small number of eigenvalues are sufficient for simple cases of a few layers by just minimizing the total error between measured and computed eigenvalues to reconstruct the refractive index. Finally, we propose a computational method based on a Newton-type algorithm for reconstructions of a general piecewise constant refractive index for any domain from transmission eigenvalues. The algorithm can be performed without having knowledge of the exact position of the eigenvalues in the spectrum.
引用
收藏
页数:14
相关论文
共 33 条
[1]   The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation [J].
Aktosun, Tuncay ;
Gintides, Drossos ;
Papanicolaou, Vassilis G. .
INVERSE PROBLEMS, 2011, 27 (11)
[2]  
Babuska I., 1991, HDB NUMERICAL ANAL, V2
[3]  
Cakoni F., 2012, MSRI PUBLICATIONS, P527
[4]   On the use of transmission eigenvalues to estimate the index of refraction from far field data [J].
Cakoni, Fioralba ;
Colton, David ;
Monk, Peter .
INVERSE PROBLEMS, 2007, 23 (02) :507-522
[5]   THE INTERIOR TRANSMISSION EIGENVALUE PROBLEM [J].
Cakoni, Fioralba ;
Colton, David ;
Gintides, Drossos .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) :2912-2921
[6]   The inverse electromagnetic scattering problem for anisotropic media [J].
Cakoni, Fioralba ;
Colton, David ;
Monk, Peter ;
Sun, Jiguang .
INVERSE PROBLEMS, 2010, 26 (07)
[7]   On the determination of Dirichlet or transmission eigenvalues from far field data [J].
Cakoni, Fioralba ;
Colton, David ;
Haddar, Houssem .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (7-8) :379-383
[8]   THE EXISTENCE OF AN INFINITE DISCRETE SET OF TRANSMISSION EIGENVALUES [J].
Cakoni, Fioralba ;
Gintides, Drossos ;
Haddar, Houssem .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :237-255
[9]   NEW RESULTS ON TRANSMISSION EIGENVALUES [J].
Cakoni, Fioralba ;
Gintides, Drossos .
INVERSE PROBLEMS AND IMAGING, 2010, 4 (01) :39-48
[10]   Transmission eigenvalues and the nondestructive testing of dielectrics [J].
Cakoni, Fioralba ;
Cayoeren, Mehmet ;
Colton, David .
INVERSE PROBLEMS, 2008, 24 (06)