The measurement of photocathode transverse energy distribution curves (TEDCs) using the transverse energy spread spectrometer (TESS) experimental system

被引:4
作者
Jones, L. B. [1 ,2 ]
Juarez-Lopez, D. P. [2 ,3 ]
Scheibler, H. E. [4 ,5 ]
Terekhov, A. S. [4 ]
Militsyn, B. L. [1 ,2 ]
Welsch, C. P. [2 ,3 ]
Noakes, T. C. Q. [1 ,2 ]
机构
[1] ASTeC STFC Daresbury Lab, Warrington WA4 4AD, England
[2] Cockcroft Inst Accelerator Sci & Technol, Warrington WA4 4AD, England
[3] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, England
[4] SB RAS, Rhaznov Inst Semicond Phys, Novosibirsk, Russia
[5] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
All Open Access; Hybrid Gold;
D O I
10.1063/5.0109053
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The minimum achievable particle beam emittance in an electron accelerator depends strongly on the intrinsic emittance of the photocathode electron source. This is measurable as the mean longitudinal and transverse energy spreads in the photoemitted electron beam (MLE and MTE respectively); consequently, MLE and MTE are notable figures of merit for photocathodes used as electron sources in particle accelerators. The overall energy spread is defined by the sum of the MTE and the MLE, and the minimization of MTE is crucial to reduce emittance and thus generate a high-brightness electron beam. Reducing the electron beam emittance in an accelerator that drives a Free-Electron Laser (FEL) delivers a significant reduction in the saturation length for an x-ray FEL, thus reducing the machine's construction footprint and operating costs while increasing the x-ray beam brightness. The ability to measure the transverse energy distribution curve of photoelectrons emitted from a photocathode is a key enabler in photocathode research and development that has prompted the Accelerator Science and Technology Centre (ASTeC) at the STFC Daresbury Laboratory to develop the Transverse Energy Spread Spectrometer to make these crucial measurements. We present details of the design for the upgraded TESS instrument with measured data for copper (100), (110), and (111) single-crystal photocathodes illuminated at UV wavelengths around 266 nm. (C) 2022 Author(s).
引用
收藏
页数:12
相关论文
共 32 条
[1]   Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses [J].
An, Chenjie ;
Zhu, Rui ;
Xu, Jun ;
Liu, Yaqi ;
Hu, Xiaopeng ;
Zhang, Jiasen ;
Yu, Dapeng .
AIP ADVANCES, 2018, 8 (05)
[2]  
[Anonymous], PCO ULTR
[3]  
[Anonymous], TMC300 SINGL MON
[4]  
[Anonymous], EQ 99X LDLS
[5]   Thermal emittance measurements of a cesium potassium antimonide photocathode [J].
Bazarov, Ivan ;
Cultrera, Luca ;
Bartnik, Adam ;
Dunham, Bruce ;
Karkare, Siddharth ;
Li, Yulin ;
Liu, Xianghong ;
Maxson, Jared ;
Roussel, William .
APPLIED PHYSICS LETTERS, 2011, 98 (22)
[6]  
Boreman G., 2001, Modulation transfer function in optical and electrooptical systems, DOI DOI 10.1117/3.419857
[7]   Growth and characterization of rugged sodium potassium antimonide photocathodes for high brilliance photoinjector [J].
Cultrera, L. ;
Karkare, S. ;
Lillard, B. ;
Bartnik, A. ;
Bazarov, I. ;
Dunham, B. ;
Schaff, W. ;
Smolenski, K. .
APPLIED PHYSICS LETTERS, 2013, 103 (10)
[8]   Measurement of the longitudinal energy distribution of electrons in low energy beams using electrostatic elements [J].
Devlin, L. J. ;
Jones, L. B. ;
Noakes, T. C. Q. ;
Welsch, C. P. ;
Militsyn, B. L. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (08)
[9]   Intrinsic emittance reduction of copper cathodes by laser wavelength tuning in an rf photoinjector [J].
Divall, Marta Csatari ;
Prat, Eduard ;
Bettoni, Simona ;
Vicario, Carlo ;
Trisorio, Alexandre ;
Schietinger, Thomas ;
Hauri, Christoph P. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2015, 18 (03)
[10]   Quantum efficiency and thermal emittance of metal photocathodes [J].
Dowell, David H. ;
Schmerge, John F. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2009, 12 (07)