Cell type annotation of single-cell chromatin accessibility data via supervised Bayesian embedding

被引:65
作者
Chen, Xiaoyang [1 ]
Chen, Shengquan [1 ]
Song, Shuang [2 ]
Gao, Zijing [1 ]
Hou, Lin [2 ]
Zhang, Xuegong [1 ]
Lv, Hairong [1 ]
Jiang, Rui [1 ]
机构
[1] Tsinghua Univ, Ctr Synthet & Syst Biol, Beijing Natl Res Ctr Informat Sci & Technol, Dept Automat,Bioinformat Div,Minist Educ,Key Lab, Beijing, Peoples R China
[2] Tsinghua Univ, Ctr Stat Sci, Dept Ind Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
RNA-SEQ DATA; PRINCIPLES; BROWSER; ATLAS; MOUSE;
D O I
10.1038/s42256-021-00432-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in single-cell technologies have enabled the characterization of epigenomic heterogeneity at the cellular level. Computational methods for automatic cell type annotation are urgently needed given the exponential growth in the number of cells. In particular, annotation of single-cell chromatin accessibility sequencing (scCAS) data, which can capture the chromatin regulatory landscape that governs transcription in each cell type, has not been fully investigated. Here we propose EpiAnno, a probabilistic generative model integrated with a Bayesian neural network, to annotate scCAS data automatically in a supervised manner. We systematically validate the superior performance of EpiAnno for both intra- and inter-dataset annotation on various datasets. We further demonstrate the advantages of EpiAnno for interpretable embedding and biological implications via expression enrichment analysis, partitioned heritability analysis, enhancer identification, cis-coaccessibility analysis and pathway enrichment analysis. In addition, we show that EpiAnno has the potential to reveal cell type-specific motifs and facilitate scCAS data simulation. The investigation of single-cell epigenomics with technologies such as single-cell chromatin accessibility sequencing (scCAS) presents an opportunity to expand the understanding of gene regulation at the cellular level. The authors develop a probabilistic generative model to better characterize cell heterogeneity and accurately annotate the cell type of scCAS data.
引用
收藏
页码:116 / 126
页数:11
相关论文
共 61 条
[1]   A comparison of automatic cell identification methods for single-cell RNA sequencing data [J].
Abdelaal, Tamim ;
Michielsen, Lieke ;
Cats, Davy ;
Hoogduin, Dylan ;
Mei, Hailiang ;
Reinders, Marcel J. T. ;
Mahfouz, Ahmed .
GENOME BIOLOGY, 2019, 20 (01)
[2]   Astrocyte Regulation of Synaptic Behavior [J].
Allen, Nicola J. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 30, 2014, 30 :439-463
[3]  
[Anonymous], 2015, 3 INT C LEARNING REP
[4]   Organization of the human tarbp2 gene reveals two promoters that are repressed in an astrocytic cell line [J].
Bannwarth, S ;
Talakoub, L ;
Letourneur, F ;
Duarte, M ;
Purcell, DF ;
Hiscott, J ;
Gatignol, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (52) :48803-48813
[5]   Single-cell chromatin accessibility reveals principles of regulatory variation [J].
Buenostro, Jason D. ;
Wu, Beijing ;
Litzenburger, Ulrike M. ;
Ruff, Dave ;
Gonzales, Michael L. ;
Snyder, Michael P. ;
Chang, Howard Y. ;
Greenleaf, William J. .
NATURE, 2015, 523 (7561) :486-U264
[6]   Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation [J].
Buenrostro, Jason D. ;
Corces, M. Ryan ;
Lareau, Caleb A. ;
Wu, Beijing ;
Schep, Alicia N. ;
Aryee, Martin J. ;
Majeti, Ravindra ;
Chang, Howard Y. ;
Greenleaf, William J. .
CELL, 2018, 173 (06) :1535-+
[7]   The single-cell transcriptional landscape of mammalian organogenesis [J].
Cao, Junyue ;
Spielmann, Malte ;
Qiu, Xiaojie ;
Huang, Xingfan ;
Ibrahim, Daniel M. ;
Hill, Andrew J. ;
Zhang, Fan ;
Mundlos, Stefan ;
Christiansen, Lena ;
Steemers, Frank J. ;
Trapnell, Cole ;
Shendure, Jay .
NATURE, 2019, 566 (7745) :496-+
[8]   Assessment of computational methods for the analysis of single-cell ATAC-seq data [J].
Chen, Huidong ;
Lareau, Caleb A. ;
Andreani, Tommaso ;
Vinyard, Michael E. ;
Garcia, Sara P. ;
Clement, Kendell ;
Andrade-Navarro, Miguel ;
Buenrostro, Jason D. ;
Pinello, Luca .
GENOME BIOLOGY, 2019, 20 (01)
[9]  
Chen S, 2021, NAT COMMUN, V12
[10]   stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics [J].
Chen Shengquan ;
Zhang Boheng ;
Chen Xiaoyang ;
Zhang Xuegong ;
Jiang Rui .
BIOINFORMATICS, 2021, 37 :I299-I307