Synergistic toughening of poly(lactic acid) by poly(butylene adipate-co-terephthalate) and poly(methyl methacrylate)-poly(butyl acrylate)-poly(methyl methacrylate) block copolymer

被引:5
|
作者
Zhang, Haifeng [1 ]
Dong, Chungang [1 ]
Han, Xiangyan [1 ]
Han, Yuanyuan [1 ]
Zhao, Fengyang [1 ]
Yan, Nan [2 ]
Hu, Yuexin [1 ]
Zhao, Guiyan [1 ]
机构
[1] Liaoning Petrochem Univ, Sch Petrochem Engn, Fushun 113001, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun, Peoples R China
来源
POLYMER ENGINEERING AND SCIENCE | 2022年 / 62卷 / 07期
基金
中国国家自然科学基金;
关键词
MAM; mechanical properties; PBAT; PLA; synergistic toughening; MECHANICAL-PROPERTIES; PHASE MORPHOLOGY; BLENDS; COMPATIBILIZATION; POLYLACTIDE; PERFORMANCE; COMPOSITES;
D O I
10.1002/pen.26007
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Poly(butyleneadipate-co-terephthalate) (PBAT) was used to toughen poly(lactic acid) (PLA) with the addition of poly(methyl methacrylate)-poly(butyl acrylate)-poly(methyl methacrylate) (MAM) through melt blending. The impact toughness and tensile toughness of the PLA/PBAT/MAM ternary blends were greatly enhanced when the MAM content was higher than 5%. For PLA/PBAT/MAM (80/15/5) blend, the notched impact strength was as high as 42.4 kJ/m(2), and the elongation at break reached 194.7%. The structure-property relationship of the PLA/PBAT/MAM ternary blends were studied through scanning electron microscopy, dynamic mechanical analysis, and contact angle measurements. It is found MAM and PBAT have a synergistic toughening effect on PLA, the MAM acts as not only a compatibilizer but also a toughening agent, which can improve the compatibility and enhance the interfacial adhesion between PLA and PBAT. As a result, the overall mechanical properties of PLA blends were improved significantly. This result provides a simple to operate and more efficient method for PLA toughening.
引用
收藏
页码:2274 / 2282
页数:9
相关论文
共 50 条
  • [41] Effectiveness of modified lignin on poly(butylene adipate-co-terephthalate)/poly(lactic acid) mulch film performance
    Barros, Janetty J. P.
    Oliveira, Rene R.
    Luna, Carlos B. B.
    Wellen, Renate M. R.
    Moura, Esperidiana A. B.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (46)
  • [42] Effect of the Joncryl® ADR Compatibilizing Agent in Blends of Poly(butylene adipate-co-terephthalate)/Poly(lactic acid)
    Nunes, Edilene de C. D.
    de Souza, Alana G.
    Rosa, Derval dos S.
    MACROMOLECULAR SYMPOSIA, 2019, 383 (01)
  • [43] Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate)
    Sangmook Lee
    Youngjoo Lee
    Jae Wook Lee
    Macromolecular Research, 2007, 15 : 44 - 50
  • [44] Phase Structure Analysis and Composition Optimization of Poly(Lactic Acid)/Poly(Butylene Adipate-co-terephthalate) Blends
    Li, Guozhong
    Xia, Ying
    Mu, Guangqing
    Yang, Qian
    Zhou, Huimin
    Lin, Xiaojian
    Gao, Yuanmei
    Qian, Fang
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2022, 61 (03): : 413 - 424
  • [45] Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate)
    Lee, Sangmook
    Lee, Youngjoo
    Lee, Jae Wook
    MACROMOLECULAR RESEARCH, 2007, 15 (01) : 44 - 50
  • [46] Effects of biodegradable poly(butylene adipate-co-terephthalate) and poly(lactic acid) plastic degradation on soil ecosystems
    Dissanayake, Pavani Dulanja
    Withana, Piumi Amasha
    Sang, Mee Kyung
    Cho, Yoora
    Park, Jeyoung
    Oh, Dongyeop X.
    Chang, Scott X.
    Lin, Carol Sze Ki
    Bank, Michael S.
    Hwang, Sung Yeon
    Ok, Yong Sik
    SOIL USE AND MANAGEMENT, 2024, 40 (02)
  • [47] The carbon nanotubes effects on the morphology and properties of poly(lactic) acid/poly(butylene adipate-co-terephthalate) blends
    Xiao, Zhihua
    Li, Guili
    Liu, Chunxiao
    Li, Haimei
    Lin, Jun
    POLYMER COMPOSITES, 2022, 43 (12) : 8725 - 8736
  • [48] Morphology, Thermal and Mechanical Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS Blends
    Kang, Kyoung Soo
    Kim, Bong Shik
    Jang, Woo Yeul
    Shin, Boo Young
    POLYMER-KOREA, 2009, 33 (02) : 164 - 168
  • [49] Thermal stability of poly(methyl methacrylate-co-butyl acrylate) and poly(styrene-co-butyl acrylate) polymers
    Leskovac, M
    Kovacevic, V
    Fles, D
    Hace, D
    POLYMER ENGINEERING AND SCIENCE, 1999, 39 (03): : 600 - 608
  • [50] Morphology and Properties of Poly(L-lactic acid) Film Improved by Flexible Poly(butyl acrylate-co-methyl methacrylate)
    Zhu, Guo-Quan
    Wang, Fa-Gang
    Gao, Qiao-Chun
    Xu, Ke-Jing
    Liu, Yu-Ying
    ASIAN JOURNAL OF CHEMISTRY, 2014, 26 (03) : 660 - 662