Fluctuations and criticality in the random-field Ising model (vol 87, 032119, 2013)

被引:0
作者
Theodorakis, Panagiotis E.
Georgiou, Ioannis
Fytas, Nikolaos G.
机构
[1] Department of Chemical Engineering, Imperial College London
[2] Institute for Theoretical Physics, Center for Computational Materials Science, Vienna University of Technology, A-1040 Vienna
[3] Department of Physics, University of Athens, Panepistimiopolis, GR 15784 Zografos, Athens
[4] Applied Mathematics Research Centre, Coventry University, Coventry
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
D O I
10.1103/PhysRevE.87.039901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the critical properties of the d = 3 random-field Ising model with a Gaussian field distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we perform a large-scale numerical simulation of the model for a vast range of values of the disorder strength h and system sizes V = L x L x L, with L <= 156. Using the sample-to-sample fluctuations of various quantities and proper finite-size scaling techniques we estimate with high accuracy the critical disorder strength h(c) and the correlation length exponent nu. Additional simulations in the area of the estimated critical-field strength and relevant scaling analysis of the bond energy suggest bounds for the specific heat critical exponent alpha and the violation of the hyperscaling exponent theta. Finally, a data collapse analysis of the order parameter and disconnected susceptibility provides accurate estimates for the critical exponent ratios beta/nu and (gamma) over bar/nu, respectively. DOI: 10.1103/PhysRevE.87.032119
引用
收藏
页数:1
相关论文
共 50 条
[41]   DOMAIN GROWTH IN THE RANDOM-FIELD ISING-MODEL [J].
GRANT, M ;
GUNTON, JD .
PHYSICAL REVIEW B, 1984, 29 (03) :1521-1523
[42]   Monte carlo study of the random-field Ising model [J].
Newman, MEJ ;
Barkema, GT .
PHYSICAL REVIEW E, 1996, 53 (01) :393-404
[43]   Hysteresis in the random-field Ising model and bootstrap percolation [J].
Sabhapandit, S ;
Dhar, D ;
Shukla, P .
PHYSICAL REVIEW LETTERS, 2002, 88 (19) :1972021-1972024
[44]   Random-field Ising model on complete graphs and trees [J].
Dobrin, R ;
Meinke, JH ;
Duxbury, PM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (19) :L247-L254
[45]   Universality aspects of the trimodal random-field Ising model [J].
Fytas, N. G. ;
Theodorakis, P. E. ;
Georgiou, I. .
EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (10)
[46]   Monte Carlo simulations of the random-field Ising model [J].
Barber, W.C. ;
Belanger, D.P. .
Journal of Magnetism and Magnetic Materials, 2001, 226-230 (PART I) :545-547
[47]   Review of Recent Developments in the Random-Field Ising Model [J].
Fytas, Nikolaos G. ;
Martin-Mayor, Victor ;
Picco, Marco ;
Sourlas, Nicolas .
JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (02) :665-672
[48]   Modified scaling relation for the random-field Ising model [J].
Nowak, U ;
Usadel, KD ;
Esser, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 250 (1-4) :1-7
[49]   Field history analysis of spin configurations in the random-field Ising model [J].
Basso, V ;
Magni, A .
PHYSICA B-CONDENSED MATTER, 2004, 343 (1-4) :275-280
[50]   Hysteresis in the antiferromagnetic random-field Ising model at zero temperature [J].
Kurbah, Lobisor ;
Shukla, Prabodh .
PHYSICAL REVIEW E, 2011, 83 (06)