Fluctuations and criticality in the random-field Ising model (vol 87, 032119, 2013)

被引:0
作者
Theodorakis, Panagiotis E.
Georgiou, Ioannis
Fytas, Nikolaos G.
机构
[1] Department of Chemical Engineering, Imperial College London
[2] Institute for Theoretical Physics, Center for Computational Materials Science, Vienna University of Technology, A-1040 Vienna
[3] Department of Physics, University of Athens, Panepistimiopolis, GR 15784 Zografos, Athens
[4] Applied Mathematics Research Centre, Coventry University, Coventry
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
D O I
10.1103/PhysRevE.87.039901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the critical properties of the d = 3 random-field Ising model with a Gaussian field distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we perform a large-scale numerical simulation of the model for a vast range of values of the disorder strength h and system sizes V = L x L x L, with L <= 156. Using the sample-to-sample fluctuations of various quantities and proper finite-size scaling techniques we estimate with high accuracy the critical disorder strength h(c) and the correlation length exponent nu. Additional simulations in the area of the estimated critical-field strength and relevant scaling analysis of the bond energy suggest bounds for the specific heat critical exponent alpha and the violation of the hyperscaling exponent theta. Finally, a data collapse analysis of the order parameter and disconnected susceptibility provides accurate estimates for the critical exponent ratios beta/nu and (gamma) over bar/nu, respectively. DOI: 10.1103/PhysRevE.87.032119
引用
收藏
页数:1
相关论文
共 50 条
[31]   METASTABLE STATES IN THE RANDOM-FIELD ISING-MODEL [J].
GRANT, M ;
GUNTON, JD .
PHYSICAL REVIEW B, 1987, 35 (10) :4922-4928
[32]   RANDOM-FIELD ISING-MODEL AS A DYNAMIC SYSTEM [J].
SATIJA, II .
PHYSICAL REVIEW B, 1987, 35 (13) :6877-6879
[33]   LONGITUDINAL AND TRANSVERSE RANDOM-FIELD ISING-MODEL [J].
WANG, YQ ;
LI, ZY .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (46) :10067-10074
[34]   GRIFFITH SINGULARITIES IN THE RANDOM-FIELD ISING-MODEL [J].
DOTSENKO, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (10) :3397-3402
[35]   Scaling of the random-field Ising model at zero temperature [J].
Swift, MR ;
Bray, AJ ;
Maritan, A ;
Cieplak, M ;
Banavar, JR .
EUROPHYSICS LETTERS, 1997, 38 (04) :273-278
[36]   Avalanches and perturbation theory in the random-field Ising model [J].
Tarjus, Gilles ;
Tissier, Matthieu .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[37]   Review of Recent Developments in the Random-Field Ising Model [J].
Nikolaos G. Fytas ;
Víctor Martín-Mayor ;
Marco Picco ;
Nicolas Sourlas .
Journal of Statistical Physics, 2018, 172 :665-672
[38]   Ground state nonuniversality in the random-field Ising model [J].
Duxbury, PM ;
Meinke, JH .
PHYSICAL REVIEW E, 2001, 64 (03) :4
[39]   Monte Carlo simulations of the random-field Ising model [J].
Barber, WC ;
Belanger, DP .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 :545-547
[40]   FRACTAL MEASURES IN THE RANDOM-FIELD ISING-MODEL [J].
EVANGELOU, SN .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (23) :L511-L519