Fluctuations and criticality in the random-field Ising model

被引:14
作者
Theodorakis, Panagiotis E. [1 ]
Georgiou, Ioannis [2 ,3 ]
Fytas, Nikolaos G. [4 ,5 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[3] Vienna Univ Technol, Ctr Computat Mat Sci, A-1040 Vienna, Austria
[4] Univ Athens, Dept Phys, GR-15784 Athens, Greece
[5] Coventry Univ, Appl Math Res Ctr, Coventry CV1 5FB, W Midlands, England
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
SPACE RENORMALIZATION-GROUP; LOWER CRITICAL DIMENSION; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; RANDOM-SYSTEMS; MONTE-CARLO; MULTICRITICAL POINTS; TRICRITICAL POINTS; GROUND-STATES; UNIVERSALITY;
D O I
10.1103/PhysRevE.87.032119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the critical properties of the d = 3 random-field Ising model with a Gaussian field distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we perform a large-scale numerical simulation of the model for a vast range of values of the disorder strength h and system sizes V = L x L x L, with L <= 156. Using the sample-to-sample fluctuations of various quantities and proper finite-size scaling techniques we estimate with high accuracy the critical disorder strength h(c) and the correlation length exponent nu. Additional simulations in the area of the estimated critical-field strength and relevant scaling analysis of the bond energy suggest bounds for the specific heat critical exponent alpha and the violation of the hyperscaling exponent theta. Finally, a data collapse analysis of the order parameter and disconnected susceptibility provides accurate estimates for the critical exponent ratios beta/nu and (gamma) over bar/nu, respectively. DOI: 10.1103/PhysRevE.87.032119
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Universality in four-dimensional random-field magnets
    Fytas, Nikolaos G.
    Theodorakis, Panagiotis E.
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (08)
  • [22] Long-range random-field Ising model: Phase transition threshold and equivalence of short and long ranges
    Leuzzi, L.
    Parisi, G.
    PHYSICAL REVIEW B, 2013, 88 (22)
  • [23] Effective-field-theory analysis of the three-dimensional random-field Ising model on isometric lattices
    Akinci, Umit
    Yuksel, Yusuf
    Polat, Hamza
    PHYSICAL REVIEW E, 2011, 83 (06):
  • [24] Multicritical behavior in a random-field Ising model under a continuous-field probability distribution
    Salmon, Octavio R.
    Crokidakis, Nuno
    Nobre, Fernando D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (05)
  • [25] Random-field Ising and O(N) models: theoretical description through the functional renormalization group
    Tarjus, Gilles
    Tissier, Matthieu
    EUROPEAN PHYSICAL JOURNAL B, 2020, 93 (03)
  • [26] Effect of platykurtic and leptokurtic distributions in the random-field Ising model: Mean-field approach
    Duarte Queiros, Silvio M.
    Crokidakis, Nuno
    Soares-Pinto, Diogo O.
    PHYSICAL REVIEW E, 2009, 80 (01):
  • [27] Scaling and self-averaging in the three-dimensional random-field Ising model
    N. G. Fytas
    A. Malakis
    The European Physical Journal B, 2011, 79 : 13 - 20
  • [28] Phase Transitions in Disordered Systems: The Example of the Random-Field Ising Model in Four Dimensions
    Fytas, Nikolaos G.
    Martin-Mayor, Victor
    Picco, Marco
    Sourlas, Nicolas
    PHYSICAL REVIEW LETTERS, 2016, 116 (22)
  • [29] Excitations in high-dimensional random-field Ising magnets
    Ahrens, Bjoern
    Hartmann, Alexander K.
    PHYSICAL REVIEW B, 2012, 85 (22):
  • [30] First-order phase transition in a 2D random-field Ising model with conflicting dynamics
    Crokidakis, Nuno
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,