Fluctuations and criticality in the random-field Ising model (vol 87, 032119, 2013)

被引:0
作者
Theodorakis, Panagiotis E.
Georgiou, Ioannis
Fytas, Nikolaos G.
机构
[1] Department of Chemical Engineering, Imperial College London
[2] Institute for Theoretical Physics, Center for Computational Materials Science, Vienna University of Technology, A-1040 Vienna
[3] Department of Physics, University of Athens, Panepistimiopolis, GR 15784 Zografos, Athens
[4] Applied Mathematics Research Centre, Coventry University, Coventry
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
D O I
10.1103/PhysRevE.87.039901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the critical properties of the d = 3 random-field Ising model with a Gaussian field distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we perform a large-scale numerical simulation of the model for a vast range of values of the disorder strength h and system sizes V = L x L x L, with L <= 156. Using the sample-to-sample fluctuations of various quantities and proper finite-size scaling techniques we estimate with high accuracy the critical disorder strength h(c) and the correlation length exponent nu. Additional simulations in the area of the estimated critical-field strength and relevant scaling analysis of the bond energy suggest bounds for the specific heat critical exponent alpha and the violation of the hyperscaling exponent theta. Finally, a data collapse analysis of the order parameter and disconnected susceptibility provides accurate estimates for the critical exponent ratios beta/nu and (gamma) over bar/nu, respectively. DOI: 10.1103/PhysRevE.87.032119
引用
收藏
页数:1
相关论文
共 50 条
[21]   Properties of the random-field Ising model in a transverse magnetic field [J].
Senthil, T .
PHYSICAL REVIEW B, 1998, 57 (14) :8375-8380
[22]   RANDOM-FIELD ISING-MODEL IN THE PAIR APPROXIMATION [J].
YOKOTA, T .
PHYSICAL REVIEW B, 1988, 38 (16) :11669-11672
[23]   SCALING THEORY OF THE RANDOM-FIELD ISING-MODEL [J].
BRAY, AJ ;
MOORE, MA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (28) :L927-L933
[24]   Study of metastable states in the random-field Ising model [J].
Magni, A ;
Basso, V .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 290 :460-463
[25]   FORMATION OF DOMAINS IN THE RANDOM-FIELD ISING-MODEL [J].
CAMBIER, JL ;
NAUENBERG, M .
PHYSICAL REVIEW B, 1986, 34 (11) :7998-8003
[26]   STATIC PROPERTIES OF THE RANDOM-FIELD ISING-MODEL [J].
VILFAN, I ;
COWLEY, RA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (26) :5055-5063
[27]   Characterization of kinetic coarsening in a random-field Ising model [J].
Mandal, Pradipta Kumar ;
Sinha, Suman .
PHYSICAL REVIEW E, 2014, 89 (04)
[28]   TRICRITICAL POINT IN RANDOM-FIELD ISING-MODEL [J].
MATTIS, DC .
PHYSICAL REVIEW LETTERS, 1985, 55 (27) :3009-3009
[29]   RANDOM-FIELD ISING-MODEL ON A BETHE LATTICE [J].
BRUINSMA, R .
PHYSICAL REVIEW B, 1984, 30 (01) :289-299
[30]   Universality aspects of the trimodal random-field Ising model [J].
N.G. Fytas ;
P.E. Theodorakis ;
I. Georgiou .
The European Physical Journal B, 2012, 85