Ultrasensitive and Wide-Bandwidth Thermal Measurements of Graphene at Low Temperatures

被引:112
作者
Fong, Kin Chung [1 ]
Schwab, K. C. [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
SHOT-NOISE; TRANSPORT; QUANTUM; NANOBOLOMETERS; BOLOMETERS; ELECTRONS; AMPLIFIER; LIMITS;
D O I
10.1103/PhysRevX.2.031006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
At low temperatures, the electron gas of graphene is expected to show both very weak coupling to thermal baths and rapid thermalization, properties which are desirable for use as a sensitive bolometer. We demonstrate an ultrasensitive, wide-bandwidth measurement scheme based on Johnson noise to probe the thermal-transport and thermodynamic properties of the electron gas of graphene, with a resolution of 2 mK/root Hz and a bandwidth of 80 MHz. We have measured the electron-phonon coupling directly through energy transport, from 2-30 K and at a charge density of 2 x 10(11) cm(-2). We demonstrate bolometric mixing and utilize this effect to sense temperature oscillations with a period of 430 ps and determine the heat capacity of the electron gas to be 2 x 10(-21) J/(K . mu m(2)) at 5 K, which is consistent with that of a two-dimensional Dirac electron gas. These measurements suggest that graphene-based devices, together with wide-bandwidth noise thermometry, can generate substantial advances in the areas of ultrasensitive bolometry, calorimetry, microwave and terahertz photo-detection, and bolometric mixing for applications in fields such as observational astronomy and quantum information and measurement.
引用
收藏
页数:8
相关论文
共 67 条
[1]   Tunable superconducting nanoinductors [J].
Annunziata, Anthony J. ;
Santavicca, Daniel F. ;
Frunzio, Luigi ;
Catelani, Gianluigi ;
Rooks, Michael J. ;
Frydman, Aviad ;
Prober, Daniel E. .
NANOTECHNOLOGY, 2010, 21 (44)
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   Mission concept for the Single Aperture Far-Infrared (SAFIR) Observatory [J].
Benford, DJ ;
Amato, MJ ;
Mather, JC ;
Moseley, SH ;
Leisawitz, DT .
ASTROPHYSICS AND SPACE SCIENCE, 2004, 294 (3-4) :177-212
[5]  
Betz A. C., ARXIV12032753V1
[6]   Electronic Cooling in Graphene [J].
Bistritzer, R. ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[7]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[10]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)